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Motivation

General probabilistic theories (GPTs): description of systems in
terms of states, effects, and a composition rule to get proabilities.

Quantum theory (QT), standard formulation: mathematical
(Hilbert space) formalism without direct operational interpretation.

Motivation: to go in the direction of singling out QT based on
principles that are:

• operational, rather than just mathematical;

• optionally, device-independent (DI).

DI principle: for any theory that violates it, the violation can be
detected by only observing correlations among space-time events.
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Space- vs Time-like correlations
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• A, B: space-like separated,

share space-like correlations
Ω, no-signaling applies.

• A, A′: time-like separated,
information encoded into
{Ωx} and decoded by {Ey},
no-signaling does not apply.
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Principles constraining space-like correlations

Principles constraining space-like correlations are DI, since
no-signaling allows any violation to be detected by a DI test:
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Principles constraining space- and time-like correlations
Information causality (IC) constrains correlations p(b|x , y) by
exchanging a limited amount of classical information f (x , a):

x

φ

πa|x
f (x , a)

πb|y ,f (x ,a) b
y

A sufficient condition for IC violation can be obtained in a DI
way by performing a purely space-like test, i.e. a Bell test:

x πa|x
a

φ
πb|yy b

After p(a, b|x , y) is collected, one checks if there exists a
postprocessing y , b, f (x , a)→ b′ such that p(b′|x , y) violates IC.
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A principle constraining purely time-like correlations
Motivation: constraining space-like correlations does not single
out QT: what about constraining purely time-like correlations?

Framework characterizing time-like correlations of any given GPT:

• Davies-like theorem: violations attained by ray-extremal
measurements.
• Characterization of extremal measurements.

Applictions: full characterization of squit (square bit) bipartitions.
Derivation of a squit bipartition that:

• is compatible with QT at the level of space-like correlations.
• displays an anomalous behavior in its time-like correlations.

Anomaly formalized by no-hypersignaling principle constraining
time-like correlations, hence not DI.
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Notation

Purely time-like setup (memory): upon input of x , Alice prepares
system S into state Ωx and transmits it to herself in the future:

x Ωx
S

Ey y

Correlations set Pm→n
S : convex hull of all m-input/n-output

conditional probability distributions py |x achievable by system S .

S = Cd ,Qd for d-dimensional classical or quantum system.
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Frenkel and Weiner’s theorem

Frenkel and Weiner recently proved this remarkable result1:

Pm→n
Cd

= Pm→n
Qd

, ∀m, n.

Holevo bound: Cd and Qd achieve same mutual information.

Holevo bound constrains a specific function defined on Pm→n
Qd

.

Frenkel-Weiner’s theorem constrains Pm→n
Qd

itself.

The Holevo bound is a corollary of Frenkel-Weiner’s theorem!

1P.E. Frenkel and M. Weiner, Commun. Math. Phys. 340, 563 (2015)
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Signaling dimension

Definition (Signaling dimension)

The signaling dimension of a system S, denoted by κ(S), is the
smallest integer d such that Pm→n

S ⊆ Pm→n
Cd

, ∀m, n.

Properties of the signaling dimension:

• by definition, κ(S) equals the usual classical dimension,

• κ(S) also equals 2 the usual quantum dimension, thus for
brevity Pm→n

d := Pm→n
Cd

= Pm→n
Qd

,

• κ(S) does not depend on an arbitrarily made choice of a
specific protocol (such as perfect state discrimination);

• κ(S) is non-trivial even for those theories where perfectly
discriminable states do not exist.

2P.E. Frenkel and M. Weiner, Commun. Math. Phys. 340, 563 (2015)
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Applications of the signaling dimension

• Characterization 3 of locally classical GPTs.

• Characterization 4 of the polytope Pm→n
d .

• Characterization 5 of the signaling dimension for noisy
channels.

• Relation 6 to the information storing capacity.

3G. M. D’Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 101, 2020; G.
M. D’Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 102, 2020

4B. Doolittle and E. Chitambar, Phys. Rev. Research 3, 2021; E.
Chitambar, I. George, B. Doolittle, and M. Junge, IEEE Trans. Inf. Theory 69,
1660 (2023)

5P. E. Frenkel and M. Weiner, Quantum 6, 2022; P. E. Frenkel, Quantum 6,
2022

6K. Matsumoto and G. Kimura, arXiv.1802.01162, 2018
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Characterization of extremal measurements

Any measurement can be regarded as a probability distribution
over normalized effects, that is, effects whose projection on the
unit effect e equals e.

Lemma (Extremal measurements with ray-extremal effects)

For any measurement M = {py > 0, ey} with extremal normalized
effects {ey}, the following conditions are equivalent:

1. M is extremal,

2. {ey} are linearly independent.
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Computation of extremal measurements

A probability distribution p is a measurement on the extremal
normalized effects given by the columns of matrix E if and only if

Ep = e,

p ≥ 0.

That is, p is an extremal measurement if and only if it is a vertex
of such a polytope, given through its faces description.

Proposition

The extremal measurements with extremal normalized effects can
therefore be found 7 by passing from the faces description to the
vertices description, a standard problem that can be solved e.g.
with the double description method.

7M. Dall’Arno, A. Tosini, F. Buscemi, The signaling dimension in
generalized probabilistic theories, arXiv:2311.13103
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The size of the problem

Lemma
The number V of vertices of Pm→n

d is given by

V =
d∑

k=1

k!

(
n

k

){
m

k

}
.

In typical instances of the problem, V is too large for te problem to
be practically tractable!
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Computation of the signaling dimension

• Any row of p that is the convex combination of other rows can
be eliminated without altering the result, thus reducing the
effective value of m (and thus V ) without loss of generality.

• Any vertex of Pm→n
d that contains an entry equal to one

where p contains a zero will not contribute to the convex
decomposition of p; hence can be discarded without loss of
generality.
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No-hypersignaling principle

Definition (No-hypersignaling principle)

A theory is non-hypersignaling iff, for any set of systems {Sk},
the signaling dimension of ⊗kSk satisfies

κ(⊗kSk) ≤
∏
k

κ(Sk).

Informally, in terms of input-output correlations, it must not
matter if the systems are transmitted separately or jointly.

Even more informally, the no-hypersignaling is a purely time-like
counterpart of no-signaling.

For two identical systems Pm→n
S ⊆ Pm→n

d =⇒ Pm→n
S⊗2 ⊆ Pm→n

d2 .
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A hypersignaling theory

Pm→n
S Pm→n

S×
Pm→n
d Pm→n

d

Pm→n
d2

Pm→n
S⊗S

An example of a hypersignaling
theory: while system S satisfies
Pm→n
S ⊆ Pm→n

d , and thus has
signaling dimension d , the com-
posite system S ⊗S has a signal-
ing dimension strictly larger than
d2.
Informally, by transmitting the
systems jointly rather than sep-
arately, better correlations are
achieved.
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Conclusion

Is no-hypersignaling independent of other principles?
No-Hypersignaling

Information Causality

•PR

•CT
•QT

•HS

No-Hypersignaling

Local Tomography

•CT
•QT

•PR

•RQT
•FQT

•HS

No-Hypersignaling vs Information
Causality:

• CT classical theory,

• QT quantum theory,

• PR PR-boxes theory,

• HS hypersignaling theory.

No-Hypersignaling vs Local Tomogra-
phy:

• RQT real quantum theory,

• FQT fermionic quantum theory.
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A toy model theory...
We start from the squit, the elementary system of the theory
commonly considered to produce PR correlations:

ω1

ω3ω0

ω2

e1
2

e2
2

e0
2

e3
2

ē
0

1
−11

0

−1

−1
0

• four extremal states {ωx}
(yellow square),

• four extremal effects {ey},
plus the null and unit
effects 0, ē (blue cone).

For a squit S one has that Pm→n
S = Pm→n

2 , that is any correlation
py |x achievable by transferring a squit:

x ωx
S

ey y

is also achievable by transferring a classical bit.
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All of the bipartitions of a squit

All bipartite extensions of a squit can be given in terms of:

• 24 extremal bipartite states, 8 of which are entangled,

• 24 extremal bipartite effects, 8 of which are entangled.

We derived all the self-consistent bipartite extensions of a squit:

1. PR model: All the 24 states; only the 16 factorized effects;

2. HS model: Only the 16 factorized states; all the 24 effects;

3. Frozen Models: Only one entangled state and effect
included, but no allowed reversible dynamics.

Since, for PR model, extremal measurements have four effects,
Pm→n
S⊗S = Pm→n

4 , i.e. PR model cannot violate no-hypersignaling.

Analogously, since HS model has no entangled states, it cannot
exhibit superclassical space-like correlations.
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Extremal measurements of two squits

M # E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23

0 2 120 120

1 4 60 60 60 60

2 4 60 60 60 60

3 6 30 30 30 30 60 60

4 6 30 30 30 30 60 60

5 6 40 40 40 40 40 40

6 7 30 30 30 30 30 30 60

7 8 20 20 20 40 20 40 40 40

8 8 20 20 40 20 20 40 40 40

9 8 40 20 20 20 40 20 40 40

10 8 30 30 30 30 30 30 30 30

11 9 20 20 20 20 20 20 40 40 40

12 9 15 15 15 30 30 45 30 30 30

13 9 20 20 20 20 20 20 20 20 80

14 9 24 24 24 48 24 24 24 24 24

M # E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23
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Does the HS model violate the no-hypersignaling principle?

Consider payoff g and input/output correation p, achievable by
transmitting a family of seven states {Ωx} and performing a
measurement with seven effects {Ey} of HS model:

g =
1

21



2 0 0 0 0 1 0
0 2 0 0 0 0 2
0 2 2 0 0 0 0
0 0 2 0 0 0 2
0 0 0 1 0 1 0
0 0 0 1 0 0 0
0 0 0 0 2 1 0


, p =

1

2



1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 1 1 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 0


,

By exchanging two classical bits, the optimal payoff is 10/21, but
g · p = 1/2 > 10/21, thus no-hypersignaling is violated!
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The signaling dimension of two squits is five
M # d g · b v V

3 6 4 128 ∼ 9 · 1010

4 6 4 64 ∼ 9 · 1010

5 6 4 465 ∼ 9 · 1010

6 7 5 2 672 ∼ 4 · 1012

7 8 5 1/3 60752 ∼ 1013

8 8 5 8/3 7616 ∼ 1013

9 8 5 2 10040 ∼ 1013

10 8 4 576 ∼ 3 · 1011

11 9 5 4/3 37136 ∼ 2 · 1013

12 9 5 2 107504 ∼ 2 · 1013

13 9 5 2/3 8704 ∼ 2 · 1013

14 9 5 8/5 488092 ∼ 2 · 1013

M # d g · b v V

Corollary

The signaling dimension of the composition of two squits named
HS model, including all eight possible entangled effects, is five.
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Motivation: characterizing time-like correlations allowed by QT.

Our general program8:

• We introduced signaling dimension as an operational,
task-independent dimension for any GPT.

• We derived a general theoretical framework for the
computation of the signaling dimension.

• We introduced the no-hypersignaling principle as a scaling rule
for signaling dimension under system composition.

Applications:

• We fully characterized all the bipartite extensions of a squit.

• By applying our framework, we showed that the HS model’s
time-like correlations violate the no-hypersignaling principle,
but its space-like correlations are compatible with CT and QT.

8M. Dall’Arno, S. Brandsen, A. Tosini, F. Buscemi, and V. Vedral,
No-hypersignaling principle, Phys. Rev. Lett. 119, 020401 (2017)
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