 $•00000$

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0)

 000

 00000

KORK ERKER ADAM ADA

 \cap

The Signaling Dimension and the No-Hypersignaling Principle Phys. Rev. Lett. 119, 020401 (2017) Quantum Views 6, 66 (2022) arXiv:2311.13103

Michele Dall'Arno, Sarah Brandsen, Alessandro Tosini, Francesco Buscemi

Quantum Foundations, 11 March 2024

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) Mo-hypersignaling [Square bits](#page-17-0) [Conclusion](#page-22-0)
 Introduction Conclusion Conclusion Conclusion Conclusion

Motivation

General probabilistic theories (GPTs): description of systems in terms of states, effects, and a composition rule to get proabilities.

Quantum theory (QT), standard formulation: mathematical (Hilbert space) formalism without direct operational interpretation.

Motivation: to go in the direction of singling out QT based on principles that are:

- operational, rather than just mathematical;
- optionally, device-independent (DI).

DI principle: for any theory that violates it, the violation can be detected by only observing correlations among space-time events.

 2990

Space- vs Time-like correlations

- A, B : space-like separated, share space-like correlations Ω , no-signaling applies.
- \bullet A, A': time-like separated, information encoded into $\{\Omega_x\}$ and decoded by $\{E_v\},\$ no-signaling does not apply.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

KORK EXTERNE PROVIDE

 \cap

Principles constraining space-like correlations

Principles constraining space-like correlations are DI, since no-signaling allows any violation to be detected by a DI test:

Principles constraining space- and time-like correlations **Information causality** (IC) constrains correlations $p(b|x, y)$ by exchanging a limited amount of classical information $f(x, a)$:

A sufficient condition for IC violation can be obtained in a DI way by performing a *purely space-like* test, i.e. a Bell test:

After $p(a, b|x, y)$ is collected, one checks if there exists a postprocessing $y, b, f(x, a) \rightarrow b'$ such th[at](#page-6-0) $p(b'|x, y)$ $p(b'|x, y)$ $p(b'|x, y)$ [vio](#page-0-0)[l](#page-5-0)at[es](#page-0-0) [IC](#page-6-0)[.](#page-0-0) 000

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0)

 000

A principle constraining purely time-like correlations **Motivation:** constraining space-like correlations does not single out QT : what about constraining purely **time-like** correlations?

Framework characterizing time-like correlations of any given GPT:

- Davies-like theorem: violations attained by ray-extremal measurements.
- Characterization of extremal measurements.

Applictions: full characterization of squit (square bit) bipartitions. Derivation of a squit bipartition that:

- is compatible with QT at the level of **space-like** correlations.
- displays an anomalous behavior in its **time-like** correlations.

Anomaly formalized by **no-hypersignaling** principle constraining time-like correlations, hence not DI.**KORK ERKER ADAM ADA**

Purely time-like setup (memory): upon input of x , Alice prepares system S into state Ω_x and transmits it to herself in the future:

$$
x = \underbrace{\Omega_x} \quad S \quad E_y \quad y
$$

Correlations set $P_S^{m \to n}$: convex hull of all *m*-input/*n*-output conditional probability distributions $p_{v|x}$ achievable by system S.

KORKARYKERKER POLO

 $S = C_d$, Q_d for d-dimensional classical or quantum system.

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0)

 000

 00000

Frenkel and Weiner's theorem

Frenkel and Weiner recently proved this remarkable result 1 :

$$
\mathcal{P}_{\mathcal{C}_d}^{m\to n}=\mathcal{P}_{\mathcal{Q}_d}^{m\to n},\quad \forall m,n.
$$

Holevo bound: C_d and Q_d achieve same mutual information.

Holevo bound constrains a **specific function** defined on $\mathcal{P}_{Q_d}^{m\rightarrow n}$. Frenkel-Weiner's theorem constrains $\mathcal{P}_{Q_d}^{m \rightarrow n}$ itself.

The Holevo bound is a **corollary** of Frenkel-Weiner's theorem!

¹ P.E. Frenkel and M. Weiner, Commun. Math. P[hy](#page-6-0)s. [3](#page-6-0)[4](#page-6-0)[0](#page-5-0)[,](#page-7-0) [5](#page-8-0)[6](#page-5-0)3 \equiv [\(](#page-13-0)[2](#page-14-0)0[1](#page-6-0)[5](#page-13-0)[\)](#page-14-0) \equiv ΩQ

[Introduction](#page-0-0) **[Signaling dimension](#page-6-0)** [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0) 00000000

 000

 00000

Signaling dimension

Definition (Signaling dimension)

The signaling dimension of a system S, denoted by $\kappa(S)$, is the smallest integer d such that $\mathcal{P}_{S}^{m\rightarrow n}\subseteq \mathcal{P}_{\mathcal{C}_{d}}^{m\rightarrow n}$, $\forall m,n.$

Properties of the signaling dimension:

- by definition, $\kappa(S)$ equals the usual classical dimension,
- $\kappa(S)$ also equals ² the usual quantum dimension, thus for brevity $\mathcal{P}_{d}^{m\rightarrow n} := \mathcal{P}_{\mathcal{C}_{d}}^{m\rightarrow n} = \mathcal{P}_{Q_{d}}^{m\rightarrow n}$,
- $\kappa(S)$ does not depend on an arbitrarily made choice of a specific protocol (such as perfect state discrimination);
- $\kappa(S)$ is non-trivial even for those theories where perfectly discriminable states do not exist.

² P.E. Frenkel and M. Weiner, Commun. Math. P[hy](#page-7-0)s. [3](#page-6-0)[4](#page-7-0)[0](#page-5-0)[,](#page-8-0) [5](#page-9-0)[6](#page-5-0)3 (2015) (2015) (2015) (2015) (2015) (2015) ÷. Ω

Applications of the signaling dimension

- Characterization 3 of locally classical GPTs.
- Characterization ⁴ of the polytope $\mathcal{P}_d^{m \to n}$.
- Characterization 5 of the signaling dimension for noisy channels.
- Relation ⁶ to the information storing capacity.

³G. M. D'Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 101, 2020; G. M. D'Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 102, 2020

 4 B. Doolittle and E. Chitambar, Phys. Rev. Research 3, 2021; E. Chitambar, I. George, B. Doolittle, and M. Junge, IEEE Trans. Inf. Theory 69, 1660 (2023)

⁵P. E. Frenkel and M. Weiner, Quantum 6, 2022; P. E. Frenkel, Quantum 6, 2022

 $^{\sf 6}$ K. Matsumoto and G. Kimura, arXiv.1802.0116[2, 2](#page-8-0)[01](#page-10-0)[8](#page-8-0) \scriptstyle and \scriptstyle and \scriptstyle and \scriptstyle and \scriptstyle

KORKARYKERKER POLO

Characterization of extremal measurements

Any measurement can be regarded as a probability distribution over normalized effects, that is, effects whose projection on the unit effect \overline{e} equals \overline{e} .

Lemma (Extremal measurements with ray-extremal effects) For any measurement $M = \{p_v > 0, e_v\}$ with extremal normalized effects $\{e_v\}$, the following conditions are equivalent:

- 1. M is extremal,
- 2. $\{e_v\}$ are linearly independent.

[Introduction](#page-0-0) **[Signaling dimension](#page-6-0)** [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0)
000000 000000000 0000000 000

 000

 00000

Computation of extremal measurements

A probability distribution p is a measurement on the extremal normalized effects given by the columns of matrix E if and only if

> $Ep = \overline{e}$, $p > 0$.

That is, p is an extremal measurement if and only if it is a vertex of such a polytope, given through its faces description.

Proposition

The extremal measurements with extremal normalized effects can therefore be found $⁷$ by passing from the faces description to the</sup> vertices description, a standard problem that can be solved e.g. with the double description method.

 7 M. Dall'Arno, A. Tosini, F. Buscemi, The signaling dimension in generalized probabilistic theories, arXiv:2311.13103 And Mark Albert Report of Mark Report

KORK ERKER ADA ADA KORA

 \cap

The size of the problem

Lemma

The number V of vertices of $\mathcal{P}_d^{m \to n}$ is given by

$$
V = \sum_{k=1}^d k! \binom{n}{k} \binom{m}{k}.
$$

In typical instances of the problem, V is too large for te problem to be practically tractable!

 00000

KORKARYKERKER POLO

Computation of the signaling dimension

- Any row of p that is the convex combination of other rows can be eliminated without altering the result, thus reducing the effective value of m (and thus V) without loss of generality.
- Any vertex of $\mathcal{P}_{d}^{m\rightarrow n}$ that contains an entry equal to one where p contains a zero will not contribute to the convex decomposition of p; hence can be discarded without loss of generality.

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) **[No-hypersignaling](#page-14-0)** [Square bits](#page-17-0) [Conclusion](#page-22-0)
 Conclusion Conclusion **Conclusion Conclusion**

 \bullet

No-hypersignaling principle

Definition (No-hypersignaling principle)

A theory is **non-hypersignaling** iff, for any set of systems $\{S_k\}$, the signaling dimension of $\otimes_k S_k$ satisfies

$$
\kappa(\otimes_k S_k) \leq \prod_k \kappa(S_k).
$$

Informally, in terms of input-output correlations, it must not matter if the systems are transmitted separately or jointly.

Even more informally, the no-hypersignaling is a purely time-like counterpart of no-signaling.

For two i[d](#page-13-0)entical systems $\mathcal{P}_{\mathcal{S}}^{m\to n}\subseteq \mathcal{P}_{d}^{m\to n} \implies \mathcal{P}_{\mathcal{S}^{\otimes 2}}^{m\to n}\subseteq \mathcal{P}_{d^2}^{m\to n}.$ $\mathcal{P}_{\mathcal{S}}^{m\to n}\subseteq \mathcal{P}_{d}^{m\to n} \implies \mathcal{P}_{\mathcal{S}^{\otimes 2}}^{m\to n}\subseteq \mathcal{P}_{d^2}^{m\to n}.$ $\mathcal{P}_{\mathcal{S}}^{m\to n}\subseteq \mathcal{P}_{d}^{m\to n} \implies \mathcal{P}_{\mathcal{S}^{\otimes 2}}^{m\to n}\subseteq \mathcal{P}_{d^2}^{m\to n}.$

A hypersignaling theory

An example of a hypersignaling **theory**: while system S satisfies $\mathcal{P}_{\mathcal{S}}^{m\rightarrow n}\ \subseteq\ \mathcal{P}_{d}^{m\rightarrow n},$ and thus has signaling dimension d , the composite system $S \otimes S$ has a signaling dimension strictly larger than d^2 .

Informally, by transmitting the systems jointly rather than separately, better correlations are achieved.

KORK ERKER ADA ADA KORA

Conclusion

Is no-hypersignaling independent of other principles? No-Hypersignaling

No-Hypersignaling vs Information Causality:

- CT classical theory,
- **QT** quantum theory,
- **PR** PR-boxes theory,
- **HS** hypersignaling theory.

No-Hypersignaling

No-Hypersignaling vs Local Tomography:

- **RQT** real quantum theory,
	- **FQT** fermionic quantum theory.

KO KA (FRA 1988) DE XONO

[Introduction](#page-0-0) [Signaling dimension](#page-6-0) [No-hypersignaling](#page-14-0) [Square bits](#page-17-0) [Conclusion](#page-22-0) 00000000

 000

 \bullet 0000

A toy model theory...

We start from the squit, the elementary system of the theory commonly considered to produce PR correlations:

- four extremal states $\{\omega_x\}$ (yellow square),
- four extremal **effects** $\{e_v\}$, plus the null and unit effects $0, \bar{e}$ (blue cone).

 $\mathcal{A}(\overline{\mathcal{B}}) \rightarrow \mathcal{A}(\overline{\mathcal{B}}) \rightarrow \mathcal{A}(\overline{\mathcal{B}}) \rightarrow \mathcal{A}(\overline{\mathcal{B}})$

For a squit S one has that $\mathcal{P}_{S}^{m\rightarrow n}=\mathcal{P}_{2}^{m\rightarrow n}$, that is any correlation $p_{v|x}$ achievable by transferring a squit:

$$
x = \underbrace{\omega_x} \stackrel{S}{\longrightarrow} \underbrace{e_y} \stackrel{y}{\longrightarrow} y
$$

is also achievable by transferring a classical [bit](#page-16-0).

 000

All of the bipartitions of a squit

All bipartite extensions of a squit can be given in terms of:

- 24 extremal bipartite states, 8 of which are entangled,
- 24 extremal bipartite effects, 8 of which are entangled.

We derived all the self-consistent bipartite extensions of a squit:

- 1. PR model: All the 24 states; only the 16 factorized effects;
- 2. HS model: Only the 16 factorized states; all the 24 effects;
- 3. Frozen Models: Only one entangled state and effect included, but no allowed reversible dynamics.

Since, for PR model, extremal measurements have four effects, $\mathcal{P}_{\mathcal{S}\otimes\mathcal{S}}^{m\to n}= \mathcal{P}_4^{m\to n}$, i.e. PR model cannot violate no-hypersignaling.

Analogously, since HS model has no entangled states, it cannot exhibit superclassical space-like correlations.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Extremal measurements of two squits

Does the HS model violate the no-hypersignaling principle?

Consider payoff g and input/output correation p , achievable by transmitting a family of seven states $\{\Omega_{x}\}\$ and performing a measurement with seven effects ${E_v}$ of HS model:

$$
g=\frac{1}{21}\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \end{pmatrix}, \quad p=\frac{1}{2}\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}
$$

By exchanging two classical bits, the optimal payoff is 10/21, but $g \cdot p = 1/2 > 10/21$, thus no-hypersignaling is **violated!**

,

 \cap

The signaling dimension of two squits is five

Corollary

The signaling dimension of the composition of two squits named HS model, including all eight possible entangled effects, is five.

Motivation: characterizing time-like correlations allowed by QT.

Our general program⁸:

- We introduced signaling dimension as an *operational*, task-independent dimension for any GPT.
- We derived a general theoretical framework for the computation of the signaling dimension.
- We introduced the no-hypersignaling principle as a *scaling rule* for signaling dimension under system composition.

Applications:

 000000

- We fully characterized all the bipartite extensions of a squit.
- By applying our framework, we showed that the HS model's time-like correlations violate the no-hypersignaling principle, but its space-like correlations are compatible with CT and QT.

⁸M. Dall'Arno, S. Brandsen, A. Tosini, F. Buscemi, and V. Vedral, **No-hypersignaling principle, Phys. Rev. Lett. 119, 0[20](#page-21-0)4[01](#page-22-0) [\(](#page-21-0)[201](#page-22-0)[7](#page-21-0)[\)](#page-22-0)**