Signaling dimension

No-hypersignaling

Square bits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion O

The Signaling Dimension and the No-Hypersignaling Principle Phys. Rev. Lett. **119**, 020401 (2017) Quantum Views **6**, 66 (2022) arXiv:2311.13103

<u>Michele Dall'Arno</u>, Sarah Brandsen, Alessandro Tosini, Francesco Buscemi

Quantum Foundations, 11 March 2024

Signaling dimension

No-hypersignaling

Square bit

Conclusion O

Motivation

General probabilistic theories (GPTs): description of systems in terms of states, effects, and a composition rule to get proabilities.

Quantum theory (QT), standard formulation: **mathematical** (Hilbert space) formalism without direct operational interpretation.

Motivation: to go in the direction of singling out QT based on principles that are:

- operational, rather than just mathematical;
- optionally, **device-independent** (DI).

DI principle: for **any** theory that violates it, the violation can be detected by only observing correlations among space-time events.

Signaling dimensio

No-hypersignaling

Square bits

Conclusion O

Space- vs Time-like correlations

- A, B: space-like separated, share space-like correlations Ω, no-signaling applies.
- A, A': time-like separated, information encoded into {Ω_x} and decoded by {E_y}, no-signaling does not apply.

(日) (四) (日) (日) (日)

Signaling dimension

No-hypersignaling

Square bits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion O

Principles constraining space-like correlations

Principles constraining **space-like** correlations are **DI**, since no-signaling allows any violation to be detected by a DI test:

Principles constraining space- and time-like correlations Information causality (IC) constrains correlations p(b|x, y) by exchanging a limited amount of classical information f(x, a):

A **sufficient condition** for IC violation can be obtained in a DI way by performing a *purely space-like* test, i.e. a Bell test:

After p(a, b|x, y) is collected, one checks if there exists a postprocessing $y, b, f(x, a) \rightarrow b'$ such that $p(b'_{a}|x, y)$ violates IC.

Signaling dimension

No-hypersignaling

A principle constraining purely time-like correlations Motivation: constraining space-like correlations does not single out QT: what about constraining purely **time-like** correlations?

Framework characterizing time-like correlations of any given GPT:

- Davies-like theorem: violations attained by ray-extremal measurements.
- Characterization of extremal measurements.

Applictions: full characterization of squit (square bit) bipartitions. Derivation of a squit bipartition that:

- is compatible with QT at the level of **space-like** correlations.
- displays an anomalous behavior in its **time-like** correlations.

Anomaly formalized by **no-hypersignaling** principle constraining **time-like** correlations, hence not DI.

Purely time-like setup (memory): upon input of *x*, Alice prepares system *S* into state Ω_x and transmits it to herself in the future:

$$x = \Omega_x - E_y - y$$

Correlations set $\mathcal{P}_{S}^{m \to n}$: convex hull of all *m*-input/*n*-output conditional probability distributions $p_{v|x}$ achievable by system *S*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $S = C_d, Q_d$ for *d*-dimensional classical or quantum system.

Signaling dimension

No-hypersignaling

Square bits

Conclusion O

Frenkel and Weiner's theorem

Frenkel and Weiner recently proved this remarkable result¹:

$$\mathcal{P}_{C_d}^{m \to n} = \mathcal{P}_{Q_d}^{m \to n}, \quad \forall m, n.$$

Holevo bound: C_d and Q_d achieve same mutual information.

Holevo bound constrains a **specific function** defined on $\mathcal{P}_{Q_d}^{m \to n}$. Frenkel-Weiner's theorem constrains $\mathcal{P}_{Q_d}^{m \to n}$ itself.

The Holevo bound is a **corollary** of Frenkel-Weiner's theorem!

¹P.E. Frenkel and M. Weiner, Commun. Math. Phys. **340**, 563 (2015) = 🔊 .

Signaling dimension

No-hypersignaling

Square bits 00000 Conclusion O

Signaling dimension

Definition (Signaling dimension)

The signaling dimension of a system S, denoted by $\kappa(S)$, is the smallest integer d such that $\mathcal{P}_S^{m \to n} \subseteq \mathcal{P}_{C_d}^{m \to n}, \forall m, n$.

Properties of the signaling dimension:

- by definition, $\kappa(S)$ equals the usual classical dimension,
- $\kappa(S)$ also equals ² the usual quantum dimension, thus for brevity $\mathcal{P}_d^{m \to n} := \mathcal{P}_{C_d}^{m \to n} = \mathcal{P}_{Q_d}^{m \to n}$,
- κ(S) does not depend on an arbitrarily made choice of a specific protocol (such as perfect state discrimination);
- κ(S) is non-trivial even for those theories where perfectly discriminable states do not exist.

Applications of the signaling dimension

- Characterization ³ of locally classical GPTs.
- Characterization ⁴ of the polytope $\mathcal{P}_d^{m \to n}$.
- Characterization ⁵ of the signaling dimension for noisy channels.
- Relation ⁶ to the information storing capacity.

 3 G. M. D'Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 101, 2020; G. M. D'Ariano, M. Erba, and P. Perinotti, Phys. Rev. A 102, 2020

⁴B. Doolittle and E. Chitambar, Phys. Rev. Research **3**, 2021; E. Chitambar, I. George, B. Doolittle, and M. Junge, IEEE Trans. Inf. Theory **69**, 1660 (2023)

⁵P. E. Frenkel and M. Weiner, Quantum **6**, 2022; P. E. Frenkel, Quantum **6**, 2022

⁶K. Matsumoto and G. Kimura, arXiv.1802.01162, 2018 🗇 κ κ≧ κ κ≧ κ Β κ δα Φ

Characterization of extremal measurements

Any measurement can be regarded as a probability distribution over normalized effects, that is, effects whose projection on the unit effect \overline{e} equals \overline{e} .

Lemma (Extremal measurements with ray-extremal effects) For any measurement $M = \{p_y > 0, e_y\}$ with extremal normalized effects $\{e_y\}$, the following conditions are equivalent:

- 1. M is extremal,
- 2. $\{e_y\}$ are linearly independent.

Signaling dimension

No-hypersignaling

Square bits

Conclusion O

Computation of extremal measurements

A probability distribution p is a measurement on the extremal normalized effects given by the columns of matrix E if and only if

 $Ep = \overline{e},$ $p \ge 0.$

That is, p is an extremal measurement if and only if it is a vertex of such a polytope, given through its faces description.

Proposition

The extremal measurements with extremal normalized effects can therefore be found ⁷ by passing from the faces description to the vertices description, a standard problem that can be solved e.g. with the double description method.

⁷M. Dall'Arno, A. Tosini, F. Buscemi, *The signaling dimension in generalized probabilistic theories*, arXiv:2311.13103

Signaling dimension

No-hypersignaling

Square bits 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion O

The size of the problem

Lemma

The number V of vertices of $\mathcal{P}_d^{m \to n}$ is given by

$$V = \sum_{k=1}^{d} k! \binom{n}{k} \binom{m}{k}.$$

In typical instances of the problem, V is too large for te problem to be practically tractable!

Square bits

Conclusion O

Computation of the signaling dimension

- Any row of *p* that is the convex combination of other rows can be eliminated without altering the result, thus reducing the effective value of *m* (and thus *V*) without loss of generality.
- Any vertex of P^{m→n}_d that contains an entry equal to one where p contains a zero will not contribute to the convex decomposition of p; hence can be discarded without loss of generality.

Signaling dimension

No-hypersignaling •00 Square bits 00000 Conclusion O

No-hypersignaling principle

Definition (No-hypersignaling principle)

A theory is **non-hypersignaling** iff, for any set of systems $\{S_k\}$, the signaling dimension of $\otimes_k S_k$ satisfies

$$\kappa(\otimes_k S_k) \leq \prod_k \kappa(S_k).$$

Informally, in terms of input-output correlations, it must not matter if the systems are transmitted separately or jointly.

Even more informally, the no-hypersignaling is a purely time-like counterpart of no-signaling.

For two identical systems $\mathcal{P}_{S}^{m \to n} \subseteq \mathcal{P}_{d}^{m \to n} \Longrightarrow \mathcal{P}_{S^{\otimes 2}}^{m \to n} \subseteq \mathcal{P}_{d^{2}}^{m \to n}$.

Signaling dimensio

No-hypersignaling

Square bits

Conclusion O

A hypersignaling theory

An example of a **hypersignaling theory**: while system *S* satisfies $\mathcal{P}_{S}^{m \to n} \subseteq \mathcal{P}_{d}^{m \to n}$, and thus has signaling dimension *d*, the composite system $S \otimes S$ has a signaling dimension strictly larger than d^{2} .

Informally, by transmitting the systems jointly rather than separately, better correlations are achieved.

・ロト・日本・日本・日本・日本・日本

No-hypersignaling 000

Conclusion

Is no-hypersignaling independent of other principles? **No-Hypersignaling**

No-Hypersignaling Information VS Causality:

- CT classical theory.
- QT quantum theory,
- PR PR-boxes theory,
- **HS** hypersignaling theory.

No-Hypersignaling

No-Hypersignaling vs Local Tomography:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

- RQT real quantum theory,
 - **FQT** fermionic quantum theory.

Local Tomography

Signaling dimension

No-hypersignaling 000 Square bits •0000 Conclusion O

A toy model theory...

We start from the **squit**, the elementary system of the theory commonly considered to produce PR correlations:

- four extremal states {ω_x} (yellow square),
- four extremal effects {e_y}, plus the null and unit effects 0, ē (blue cone).

For a squit S one has that $\mathcal{P}_{S}^{m \to n} = \mathcal{P}_{2}^{m \to n}$, that is any correlation $p_{_{V|_{X}}}$ achievable by transferring a squit:

$$x = \underbrace{\begin{matrix} S \\ \omega_x \end{matrix}}_{e_y} = y$$

Signaling dimension

All of the bipartitions of a squit

All bipartite extensions of a squit can be given in terms of:

- 24 extremal bipartite states, 8 of which are entangled,
- 24 extremal bipartite effects, 8 of which are entangled.

We derived all the self-consistent bipartite extensions of a squit:

- 1. PR model: All the 24 states; only the 16 factorized effects;
- 2. HS model: Only the 16 factorized states; all the 24 effects;
- 3. Frozen Models: Only one entangled state and effect included, but no allowed reversible dynamics.

Since, for PR model, extremal measurements have four effects, $\mathcal{P}_{S\otimes S}^{m\to n} = \mathcal{P}_4^{m\to n}$, i.e. PR model cannot violate no-hypersignaling.

Analogously, since HS model has no entangled states, it cannot exhibit superclassical space-like correlations.

Signaling dimensio

No-hypersignaling

Square bits

Conclusion O

Extremal measurements of two squits

м	#	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	E ₁₁	E ₁₂	E ₁₃	E ₁₄	E ₁₅	E ₁₆	E ₁₇	E ₁₈	E ₁₉	E ₂₀	E ₂₁	E ₂₂	E ₂₃
0	2																	120		120					
1	4	60		60						60		60													
2	4	60		60							60		60												
3	6	30	30									30	30							60					60
4	6	30					30					30					30					60			60
5	6	40										40							40	40		40			40
6	7	30	30					30		30		30					30								60
7	8	20	20			20						40					20			40		40			40
8	8	20	20					40		20	20						40	40							40
9	8	40	20					20			20		40			20				40					40
10	8	30					30						30			30				30	30	30			30
11	9	20	20			20		20			20	20					40					40			40
12	9	15	15			15		30			30						45	30				30			30
13	9	20	20			20			20			20	20		20	20				80					
14	9	24		24			24						48		24					24	24			24	24
M	#	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E9	E ₁₀	E ₁₁	E ₁₂	E ₁₃	E ₁₄	E ₁₅	E ₁₆	E ₁₇	E ₁₈	E ₁₉	E ₂₀	E ₂₁	E ₂₂	E ₂₃

IntroductionSignaling dimensionNo-hypersignalingSquare bitsConclusion000000000000000000000000

Does the HS model violate the no-hypersignaling principle?

Consider payoff g and input/output correction p, achievable by transmitting a family of seven states $\{\Omega_x\}$ and performing a measurement with seven effects $\{E_y\}$ of HS model:

$$g = \frac{1}{21} \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 & 0 \end{pmatrix}, \quad p = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

By exchanging two classical bits, the optimal payoff is 10/21, but $g \cdot p = 1/2 > 10/21$, thus no-hypersignaling is **violated**!

,

Signaling dimension

No-hypersignaling

Square bits

Conclusion O

The signaling dimension of two squits is five

М	#	d	g ⋅ b	v	V			
3	6	4		128	$\sim 9\cdot 10^{10}$			
4	6	4		64	$\sim 9\cdot 10^{10}$			
5	6	4		465	$\sim 9 \cdot 10^{10}$			
6	7	5	2	672	$\sim 4 \cdot 10^{12}$			
7	8	5	1/3	60752	$\sim 10^{13}$			
8	8	5	8/3	7616	$\sim 10^{13}$			
9	8	5	2	10040	$\sim 10^{13}$			
10	8	4		576	$\sim 3\cdot 10^{11}$			
11	9	5	4/3	37136	$\sim 2\cdot 10^{13}$			
12	9	5	2	107504	$\sim 2\cdot 10^{13}$			
13	9	5	2/3	8704	$\sim 2\cdot 10^{13}$			
14	9	5	8/5	488092	$\sim 2 \cdot 10^{13}$			
М	#	d	g ⋅ b	v	V			

Corollary

The signaling dimension of the composition of two squits named HS model, including all eight possible entangled effects, is five.

Signaling dimension

Conclusion

Motivation: characterizing time-like correlations allowed by QT.

Our general **program**⁸:

- We introduced signaling dimension as an *operational*, *task-independent* dimension for *any* GPT.
- We derived a general *theoretical framework* for the computation of the signaling dimension.
- We introduced the no-hypersignaling principle as a *scaling rule* for signaling dimension under system composition.

Applications:

- We *fully* characterized *all* the bipartite extensions of a squit.
- By applying our framework, we showed that the HS model's time-like correlations violate the no-hypersignaling principle, but its space-like correlations are compatible with CT and QT.

⁸M. Dall'Arno, S. Brandsen, A. Tosini, F. Buscemi, and V. Vedral, *No-hypersignaling principle*, Phys. Rev. Lett. **119**, 020401 (2017) = → (=) → (=) → (<