量子誤り訂正の復号と相補性原理 中田芳史 京都大学 基礎物理学研究所 松浦孝弥 (RMIT) ·小芦雅斗 (東京大学)

arXiv:2210.06661

2024年3月12日 @Quantum Foundations

イントロダクション 非スタビライザー符号のデコーダと相補性原理

3 デコーダの具体的な構成方法

4 まとめ

2 非スタビライザー符号のデコーダと相補性原理

3 デコーダの具体的な構成方法

- ≻ 符号化 εと復号化(=デコーダ) の 組を、量子誤り訂正符号と呼ぶ。
- ▶「デコーダ」の構成は、重要だが非自明な問題。

スタビライザー演算子を測定(=シンドローム測定)し、その結果に基づいて、ZエラーとXエラーを独立に訂正する。
 今原理的にはデコーダは自明(効率や性能のよい復号手法を見つけるのは非自明)

このトークで考えること **非スタビライザー符号をどうデコードすればよいか?**

ランダム符号化 ランダム行列理論 量子カオス ユニタリ・デザイン 非スタビライザー符号

1. 非スタビライザー符号は、一般にはスタビライザー符号よりも高い符号化レートを持つ。

- ▶ 例:トーリック符号は、<u>符号化レートは漸近的に0</u>。
- 最適な符号を用いれば、<u>非ゼロの符号化レート</u>を達成可能(量子通信容量)。
- 2. 理論物理で「量子カオスと量子誤り訂正の関係」が指摘されており、大きな研究テーマ。

▶ その研究では、非スタビライザー符号が重要。

このトークで考えること 非スタビライザー符号をどうデコードすればよいか?

一筋縄ではいかなさそう・・・。。

本日のメイン・メッセージ 1. スタビライザー符号のデコーディング手法は任意の量子誤り訂正符号へと拡張可能で、 デコーディング量子回路を具体的に構成できる。 2. デコーダと相補性原理の関係。

[Barnum & Knill, JMP, 2002] [Beigi, Datta, and Leditzky, JMP2016]

非スタビライザー符号のデコーダと相補性原理

3 デコーダの具体的な構成方法

2

c.f. スタビライザー符号の場合、 シンドローム測定からZエラーとXエラーを推定する。

9/23

符号化

F基底で定まる古典情報を 正しく復元できるPOVM M_F

10/23

▶ 最大エンタングル状態を用いて定義される。

11/23

ここで、E(E,F)は、二つの基底(E,F)の相補性を表す量で、(E,F)が相補的(mutually-unbiased)の場合にE(E,F) = 0.

一般の量子誤り訂正符号でも、 「相補的な基底で定まる二種類の古典情報」をデコードするPOVMが見つかれば、 量子情報をデコードする量子回路を構成できる。

□ 最終的な目標: 一般の量子誤り訂正符号のデコーダを、量子回路の形で具体的に作りたい! ▶ 意義2:目標を達成できてはないが、「量子デコーダを作る」を、「古典情報を復元するPOVMを作る」に落とし込んだ。

2 非スタビライザー符号のデコーダと相補性原理

デコーダの具体的な構成方法

3

例) Shorの9-qubit符号 = 1量子ビットの量子状態を、9量子ビットに符号化する手法

 $|\bar{0}\rangle_Z \propto (|000\rangle_Z + |111\rangle_Z)^{\otimes 3}$ $|\bar{1}\rangle_Z \propto (|000\rangle_Z - |111\rangle_Z)^{\otimes 3}$

古典デコーダf₁

→ **Z基底**の情報を復号 どこかの物理qubitにXエラーが起こったか

2 非スタビライザー符号のデコーダと相補性原理

3 デコーダの具体的な構成方法

古典情報を復元する二種類のPOVMから、量子情報を復元するデコーディング回路を具体的に構成した。 ▶ デコーディング・エラー = 「二つのPOVMのエラー」+「古典情報を定義する二基底の相補性」 ▶ 理論的:量子デコーダにおいて相補性原理が果たす役割が操作論的に明らかに。 ▶ 実用的:「量子デコーダを具体的に構成する」を、「古典情報のPOVMの構成」まで落とせる。

FUTRE WORK

▶ デコーディング・エラーの右辺は最適ではないはず。 ➢ From scratchで、デコーディング量子回路を作りたい!

T. Utsumi & YN, in preparation

$$\underbrace{\Delta_{F}}_{\Xi 5 - \Delta_{F}} = \frac{\Delta_{E}}{\Delta_{E}(2 - \Delta_{E})} + \sqrt{\Delta_{F}} + \sqrt{\Xi(E, F)}$$
21/23

宣伝させてください。1

基礎物理学研究所

昼礎物理学研究所の、様々な研究促進プログラム

- □ 全国共同利用研究所として、日本全国の研究者が活用できるプログラムを提供。
 - > 基研研究会
 - → 数日程度の研究会を想定。国内<120万円、国際<250万円の補助がでる。 ▶ 国際モレキュール研究会
 - → 海外から人を招聘して、二週間程度の議論主体の研究会を開催。100万円の補助。 ▶ 基研での長期滞在研究プログラム
 - → 個人が一ヵ月~三か月程度滞在し、研究を行う。 などなど。開催にあたって、専任の秘書さんがついてくれる!

これらは「日本全国の研究者」が活用可能。 量子情報・基礎論分野からも、是非、積極的な利用を!

宣伝させてください。2

量子情報理論の標準的教科書を目指して。

引倉書店より、量子情報理論の教科書が出ます。

前倉書店 Asakura Publishing Co., Ltd.	P ログイン C 会員登録 こ こ こ こ こ い物カゴ ひ お問い合わせ C LANGUAGE ▼ LANGUAGE ▼
新刊情報 これから出る本 NEW BOOKS FORTHCOMING PUBLICATIONS	会社案内 お知らせ 常備店一覧 company information SHOP LIST
BOOK SEARCH の #&・キーワードなど 検察 詳細検索 〉	^{カ波・摂動論} Li論物理の探究〉1 摂動論
ジャンル一覧	中野 寛之・佐合 紀親(著) 定価 4,290 円 (本体 3,900 円+税)
環境科学 重力波・摂動 数学	論 A5判/272ページ 刊行日:2022年11月01日
4-17.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	ISBN : 978-4-254-13531-2 C3342
11 後・コンピュータ ▼ 物理学 ▼	カートに入れる えット書店で購入する amazon e-bon 紀伊國屋書店 bonto
化学 ▼ 化学工学・工業化学 ▼	Honya Club Rakutenブックス
生物科学 マ	書店の店頭在庫を確認する 紀伊國屋書店 旭屋倶楽部 売み
工学-般 ▼ >物理学-般	
経営・数理・経済工学 ▼ >天文・宇宙科学 電気・電子工学 ▼	URL
機械工学 ▼ 土木・建築工学 ▼	19922 小 「 毎年 部 小 ら 」 日 次 」 劫 筆 表 20 介 」 関 遺 使 起 (ゼ 田 本 向 け っ マ テ マ ツ
農学 ▼	ロロロノー 柳木山ダン ロベ 秋半日和ノ 肉本同報 抹ガ名回り イナノノ

著者:中田芳史 シリーズ:〈理論物理の探求〉 出版社:朝倉書店

- タイトル:「量子情報理論(仮題)」
- 出版予定日:2024年の夏~冬にかけて(校正中)

初学者~専門家をカバーした(つもり)自己完結型の教科書 世界的にも類をみない構成なので、是非。

23/23

Thank you for your attention

Special Thanks to

