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•消滅演算子の固有状態 

•積分表示の単位の分解

コヒーレント状態
最小不確定状態、レーザー光 
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• 利点：ベクトル値あるいは作用素値の積分を考えずに済む 
•欠点：通常の分解（展開）が使えない

積分表示の単位作用素の分解

たいてい弱収束、弱い意味で、との注意書きがある、なぜか？
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⟨ψ |ϕ⟩ = 1
π ∫α∈ℂ

⟨ψ |α⟩⟨α |ϕ⟩d2α弱い意味： 
行列要素が等しい
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形式的な計算

積分と無限和を交換していいとする

TEXについてのノート
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αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

∞∑

m=0

∫ (
e−|α|2 αnᾱm
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√
n!m!

)
d2α =

∫ ∞

0

rn+me−r2

n!
rdr

∫ 2π

0
ei(n−m)φdφ

=

∫ ∞

0

r2ne−r2

n!
rdrπδn,m = πδn,m (4)

∫

D(R)
|α〉〈α| d2α =

∫

D(R)
e−|α|2

∞∑

n=0

αn

√
n!
|n〉

∞∑

m=0

ᾱm
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αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

∞∑

m=0

∫ (
e−|α|2 αnᾱm
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作用素の収束
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erator’s convergence. We say an operator sequence (An)
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Remark 2. Since 〈α|ϕ〉 is a uniformly bounded con-
tinuous function of α, and the state vector |α〉 is con-
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∫
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Bochner integral. Notably, a H-valued function is inte-
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Appendix A).
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We will repeatedly use the following properties (See Ap-
pendix B for a proof).
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where we used the property (iv) in Eq. (13) to obtain the
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∑∞
n=0 bn |n〉. The norm on H is defined as

‖φ‖ =
√

〈φ|φ〉. (5)

A coherent state with an amplitude α ∈ C, is defined as

|α〉 = e−|α|2/2
∞
∑

n=0

αn |n〉 /
√
n!. (6)

It holds ‖ |α〉 ‖ = 1 and 〈n|α〉 = e−|α|2/2αn/
√
n!.

We may concern the following three topologies of op-
erator’s convergence. We say an operator sequence (An)
converges to A in the weak operator topology if

A = w- lim
n→∞

An ⇔ lim
n→∞

〈ψ|A− An|φ〉 = 0, ∀φ,ψ ∈ H.

(7)

We say (An) converges to A in the strong operator topol-
ogy (or the topology of H) if

A = s- lim
n→∞

An ⇔ lim
n→∞

‖Aφ−Anφ‖ = 0, ∀φ ∈ H.

(8)

We say (An) converges to A in the uniform operator
topology (or norm topology) if

A = lim
n→∞

An ⇔ lim
n→∞

‖A−An‖ = 0, (9)

where the operator norm is defined by sup‖φ‖≤1 ‖Aφ‖.
Our primary goal is to show the strong convergence:

I = s- lim
n→∞

(
∫

|α|≤n
|α〉 〈α|

d2α

π

)

. (10)

This can be accomplished by the following theorem, and
we can safely use the decomposition in Eq. (3).

Theorem 1. Let be ϕ ∈ H. For any ε > 0, there exists
R > 0 such that

∥
∥
∥
∥
∥
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∥
∥
∥
∥
< ε (11)

whenever r ≥ R.

Remark 2. Since 〈α|ϕ〉 is a uniformly bounded con-
tinuous function of α, and the state vector |α〉 is con-
tinuous in the sense ‖ |α〉 − |β〉 ‖ → 0 (|α − β| → 0),
the integrand |α〉 〈α|ϕ〉 is continuous and norm bounded
on |α| ≤ R. Therefore, the vector-valued Riemann sum
over the finite area |α| ≤ R converges to a state vec-
tor in H. This gives a H-valued integral and guarantees
∫

|α|≤r |α〉 〈α|ϕ〉 d
2α/π ∈ H. We can deal with the inte-

grability beyond the continuous functions in terms of the
Bochner integral. Notably, a H-valued function is inte-
gral iff its norm is square-integrable (See Theorem 11 in
Appendix A).

Proof. Let be r > 0, and let us define

In(r) =

∫ r

0

yne−y

n!
dy, (n = 0, 1, 2, 3, · · · ) . (12)

We will repeatedly use the following properties (See Ap-
pendix B for a proof).
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(iii) lim
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The property (iv) follows from (i) and (ii).
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√
n!m!

)
d2α|n〉〈m| = π

∞∑

n=0

|n〉 〈n|

=
∞∑

n=0

(∫
e−|α|2/2 αn

√
n!
〈α|ϕ〉d2α

)
|n〉, (2)

∫
|α〉〈α| d2α =

∫
e−|α|2

∞∑

n=0

∞∑

m=0

αnᾱm
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αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

∞∑

m=0

∫ (
e−|α|2 αnᾱm
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αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

∞∑

m=0

∫ (
e−|α|2 αnᾱm
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I s=
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∑
n=0

|n⟩⟨n |？

∥A∥ := sup
∥ϕ∥≤1

∥Aϕ∥

∥ϕ∥ := ⟨ϕ |ϕ⟩



作用素の収束
2

∑∞
n=0 bn |n〉. The norm on H is defined as

‖φ‖ =
√

〈φ|φ〉. (5)

A coherent state with an amplitude α ∈ C, is defined as

|α〉 = e−|α|2/2
∞
∑

n=0

αn |n〉 /
√
n!. (6)

It holds ‖ |α〉 ‖ = 1 and 〈n|α〉 = e−|α|2/2αn/
√
n!.

We may concern the following three topologies of op-
erator’s convergence. We say an operator sequence (An)
converges to A in the weak operator topology if

A = w- lim
n→∞

An ⇔ lim
n→∞

〈ψ|A− An|φ〉 = 0, ∀φ,ψ ∈ H.

(7)

We say (An) converges to A in the strong operator topol-
ogy (or the topology of H) if

A = s- lim
n→∞

An ⇔ lim
n→∞

‖Aφ−Anφ‖ = 0, ∀φ ∈ H.

(8)

We say (An) converges to A in the uniform operator
topology (or norm topology) if

A = lim
n→∞

An ⇔ lim
n→∞

‖A−An‖ = 0, (9)

where the operator norm is defined by sup‖φ‖≤1 ‖Aφ‖.
Our primary goal is to show the strong convergence:

I = s- lim
n→∞

(
∫

|α|≤n
|α〉 〈α|

d2α

π

)

. (10)

This can be accomplished by the following theorem, and
we can safely use the decomposition in Eq. (3).

Theorem 1. Let be ϕ ∈ H. For any ε > 0, there exists
R > 0 such that

∥
∥
∥
∥
∥
|ϕ〉 −

(
∫

|α|≤r
|α〉 〈α|ϕ〉

d2α

π

)∥
∥
∥
∥
∥
< ε (11)

whenever r ≥ R.

Remark 2. Since 〈α|ϕ〉 is a uniformly bounded con-
tinuous function of α, and the state vector |α〉 is con-
tinuous in the sense ‖ |α〉 − |β〉 ‖ → 0 (|α − β| → 0),
the integrand |α〉 〈α|ϕ〉 is continuous and norm bounded
on |α| ≤ R. Therefore, the vector-valued Riemann sum
over the finite area |α| ≤ R converges to a state vec-
tor in H. This gives a H-valued integral and guarantees
∫

|α|≤r |α〉 〈α|ϕ〉 d
2α/π ∈ H. We can deal with the inte-

grability beyond the continuous functions in terms of the
Bochner integral. Notably, a H-valued function is inte-
gral iff its norm is square-integrable (See Theorem 11 in
Appendix A).

Proof. Let be r > 0, and let us define

In(r) =

∫ r

0

yne−y

n!
dy, (n = 0, 1, 2, 3, · · · ) . (12)

We will repeatedly use the following properties (See Ap-
pendix B for a proof).

(i) In+1(r) ≤ In(r), (ii) 0 ≤ In(r) ≤ 1,

(iii) lim
r→∞

In(r) = 1, (iv) |1− In(r)| ≤ 1. (13)

The property (iv) follows from (i) and (ii).
From the expansion in Eqs. (4) and (6), and a some-

what lengthy process (see Appendix C), we have
∥
∥
∥
∥
∥
|ϕ〉 −

(
∫

|α|≤r
|α〉 〈α|ϕ〉

d2α

π

)∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∑

n

(

1−
∫ r2

0

yne−y

n!
dy

)

ϕn |n〉

∥
∥
∥
∥
∥

2

=
∞
∑

n=0

(

1− In(r
2)
)2 |ϕn|2

≤
k
∑

n=0

(

1− In(r
2)
)2 |ϕn|2 +

∞
∑

n=k+1

|ϕn|2 (14)

where we used the property (iv) in Eq. (13) to obtain the
last inequality.
Let be ε > 0. Since ϕ ∈ H we can select a sufficiently

large K ∈ N such that it holds for k ≥ K

∞
∑

n=k+1

|ϕn|2 <
1

2
ε. (15)

From the properties (i) and (ii) in Eq. (13), n ≤ k implies

(

1− In(r
2)
)2 ≤ (1− Ik(r

2))2. (16)

This relation leads to

k
∑
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1− In(r
2)
)2 |ϕn|2

≤
(

1− Ik(r
2)
)2

k
∑

n=0

|ϕn|2 ≤
(

1− Ik(r
2)
)2 ‖ϕ‖2. (17)

From the property (iii) in Eq. (13), we can select a suffi-
ciently large R > 0 such that, for r ≥ R, it holds

(

1− Ik(r
2)
)2 ‖ϕ‖2 <

1

2
ε. (18)

Concatenating Eqs. (14), (15), and (18) we obtain
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∥
∥
∥
∥
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∫
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|α〉 〈α|
π

d2α

)

|ϕ〉
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∥
∥
∥

2

≤(1 + Ik(r))
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∞
∑

n=k+1

|ϕn|2 < ε. (19)
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∥A∥ := sup
∥ϕ∥≤1

∥Aϕ∥

①⇒②⇒③

①ノルム収束：通常の収束

②強収束：作用させた状態が収束

③弱収束：行列要素が収束

通常 強 弱

I s= ∫α∈ℂ

1
π

|α⟩⟨α |d2α
？Schwartz ⟨ψ |A − An |ϕ⟩ ≤ ∥ψ∥∥(A − An)ϕ∥

弱収束でいいのでしょうか？

I s=
∞

∑
n=0

|n⟩⟨n |s



主要結果：強収束します
定理

3

This proves the statement of Theorem 1 and concludes
the strong convergence for the resolution of the identity
due to coherent states:

I = s- lim
r→∞

∫

|α|≤r

|α〉 〈α|
π

d2α. (20)

Remark 3. For our primary purpose, the H-valued in-
tegral as in Eq. (22) is sufficient, and it is unnecessary to
define an operator valued integral such as

An =

∫

|α|≤n
|α〉 〈α|

d2α

π
(n = 1, 2, 3, . . . ). (21)

However, it would be worth noting that this operator-
valued integral does exist as long as n is finite. We can
proof this fact similar to Remark 2. Since the density
operator of a coherent state |α〉〈α| is continuous in the
sense ‖ |α〉〈α|−|β〉〈β| ‖ → 0 (|α−β| → 0), the operator-
valued Riemann sum over a finite area |α| ≤ R converges
to a compact operator. The integral also converges in the
trace norm topology as long as the integration volume is
finite.

Remark 4. As we will show in Sect. IV, (An) of Eq. (21),
does not converge to the unit operator I in the norm
topology of Eq. (9), and this sequence has no uniform
limit. Such a property can be seen on a sequence of pro-
jection operators in the form Bn :=

∑n
k=0 |k〉 〈k|. In fact,

this sequence (Bn) does not converge to the unit oper-
ator I in the operator norm topology. Moreover, since
‖Bn −Bm‖ = 1 (n '= m), no subsequence of (Bn) con-
verges in the norm topology. A norm space is referred
to as the compact space when any bounded sequence has
a convergent subsequence. In this regards, the space of
bounded operators is not compact, and even quite a sim-
ple decomposition such as I =

∑

n |n〉 〈n| is unavailable
with respect to the norm topology unless the dimension
is finite.

III. REVIEW OF KLAUDER’S APPROACH

Here we assume the weak convergence and prove
the strong convergence based on the outline given in
Klauder’s lecture note [5].
We consider a sequence of positive operators defined

as

An |ϕ〉 :=
∫

|α|≤n
|α〉 〈α|ϕ〉

d2α

π
(n = 1, 2, 3, . . . ). (22)

The existence of this H-valued integral is guaranteed by
the prescription noted in Remark 2. From the construc-
tion it holds 〈ϕ|An|ϕ〉 ≥ 0 (See Appendix D), and thus
An is positive. In what follows, we denote this operator

positivity by An ≥ 0. Since An |ϕ〉 =
∑∞

k=0 Ik(n
2)ϕk |k〉

holds, we can confirm

〈ϕ|An|ϕ〉 ≤ ‖ϕ‖2, 〈ϕ|An|ϕ〉 ≤ 〈ϕ|An+1|ϕ〉 , (23)

‖Anϕ‖ ≤ (I0(n
2))2‖ϕ‖ ≤ ‖ϕ‖, (24)

where we repeatedly use the propery (i) and (ii) in
Eq. (13).
The relations in Eq. (23) imply An ≤ I and An ≤ An+1

for n ∈ {0, 1, 2, . . .}. The relation in Eq. (24) implies
(An) is a sequence of bounded operators and their oper-
ator norm is bounded as ‖An‖ ≤ 1 = ‖I‖.
Up to here, we have confirmed that (An) is a se-

quence of positive bounded operators which satisfies (i)
0 ≤ An ≤ I and (ii) An ≤ An+1. Armed with this bound-
edness and monotonicity, in his lecture note, Klauder
suggested to prove the following theorem:

Theorem 5. Let 0 ≤ An ≤ I and An ≤ An+1. Suppose
that (An) converges to I in the weak operator topology
as

lim
n→∞

〈φ|I −An|ϕ〉 = 0 ∀φ,ϕ ∈ H. (25)

Then, (An) converges to I in the strong operator topol-
ogy, namely

lim
n→∞

‖(I −An)φ‖ = 0 ∀φ ∈ H. (26)

Proof. Let be φ ∈ H. A straightforward calculation leads
to

‖(I −An)φ‖2 =〈(I −An)φ| (I − An)φ〉

= ‖φ‖2 − 〈Anφ|φ〉 − 〈φ|Anφ〉+ ‖Anφ‖2 .

From this formula and the weak limit, 〈Anφ|φ〉 → ‖φ‖2
and 〈φ|Anφ〉 → ‖φ‖2, we only have to prove the following
convergence:

‖Anφ‖ → ‖φ‖ (n → ∞). (27)

Let us admit that a positive operator has a unique pos-
itive square root. From the decomposition (An −A2

n) =

A1/2
n (I −An)A

1/2
n and I −An ≥ 0, it holds An −A2

n ≥ 0,
i.e., An ≥ A2

n. Then, I ≥ An ≥ A2
n leads to ‖φ‖2 ≥

〈φ|An|φ〉 ≥ 〈φ|A2
n|φ〉 = ‖Anφ‖2. We thus have

‖φ‖ ≥ ‖Anφ‖. (28)

In turn, Schwarz’s inequality yeilds 〈φ|Anφ〉 ≤
‖φ‖‖Anφ‖. The weak limit of the left-hand-side term
implies

‖φ‖2 = lim
n

〈φ, Anφ〉 ≤ ‖φ‖ lim
n

‖Anφ‖. (29)

This relation together with Eq. (28) lead to

‖φ‖ ≤ lim
n

‖Anφ‖ ≤ ‖φ‖. (30)

We thus conclude limn ‖Anφ‖ = ‖φ‖.

An |φ⟩ := π−1 ∫|α|≤n
|α⟩⟨α |φ⟩d2α,

∥(I − An) |φ⟩∥ → 0 (n → ∞)

|φ⟩ ∈ ℋ
有限閉領域の積分はベクトル値
のリーマン積分として存在確定

arXiv:2402.0831
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when the integration volume is finite. In fact, Schwartz
inequality helps us to obtain

∫

D
‖ |fα〉 ‖d2α ≤

√
∫

D
d2α

√
∫

D
‖|fα〉‖2 d2α|

=|D|1/2
√
∫

D
‖|fα〉‖2 d2α| < ∞, (A17)

where D is assumed to be a compact region on C.

Appendix B: elementary integration

Let us define

In(R) :=

∫ R

0

yne−y

n!
dy, (n = 0, 1, 2, . . . ). (B1)

As the integrand is positive, it holds In (R) ≥ 0 forR > 0.
Integration by parts yeilds

In (R) = In−1 (R)−
Rne−R

n!
. (B2)

This relation leads to

In (R) ≤ In−1 (R) . (B3)

We can readily confirm

I0 (R) =

∫ R

0
e−ydy = 1− e−R ≤ 1. (B4)

Let χ[0,R] be the characteristic function on the interval
[0, R]. Applying the monotone convergence theorem to
the sequence of functions fm(y) = e−yχ[0,m](y), we have
∫

R

lim
m→∞

fm(y)dy = lim
R→∞

I0 (R) = lim
R→∞

(

1− e−R
)

= 1.

(B5)

Now, let us define

f (n)
m (y) = (n!)−1yne−yχ[0,m](y). (B6)

For n = 1, from Eq. (B2) and the monotone convergence
theorem, we obtain
∫

R

lim
m→∞

f (1)
m (y)dy = lim

R→∞
I1 (R)

= lim
R→∞

(

I0 (R)−Re−R
)

= 1. (B7)

Repeating this process for n = 2, 3, 4, . . . , we obtain
∫

R

lim
m→∞

f (n)
m (y)dy = lim

R→∞
In (R)

= lim
R→∞

(

In−1 (R)−
Rne−R

n!

)

= 1.

(B8)

Note that Eqs. (B3) and (B4) readily imply

|1− In(R)| < 1, (R ≥ 0). (B9)

Appendix C: detail of calculation

Here, we show the following relation:
∫

D(R)
|α〉〈α|ϕ〉d2α = π

∞
∑

n=0

In(R
2)ϕn |n〉 . (C1)

Let be D(r) = {α ∈ C | |α| ≤ r }. The number state
expansion of |α〉 in Eq. (6) implies
∫

D(R)
|α〉〈α|ϕ〉d2α =

∫

D(R)
e−|α|2/2

∞∑

n=0

αn

√
n!
|n〉〈α|ϕ〉d2α

=
∞
∑

n=0

(
∫

D(R)
e−|α|2/2 α

n

√
n!
〈α|ϕ〉d2α

)

|n〉,

(C2)

where in the last line we use Theorem 16 in Appendix E
to exchange the order of integration and summation for
H-valued terms (Note that the assumptions of Theo-
rem 16 are fulfilled as | 〈α|ϕ〉 | is uniformly bounded).
Now, let us consider the following integration:

∫

D(R)
e−|α|2/2 α

n

√
n!
〈α|ϕ〉d2α

=

∫

|α|≤R

(

e−|α|2 α
n

√
n!

∞
∑

m=0

(α∗)m ϕm√
m!

)

d2α. (C3)

Using Schwartz’s inequality, we can show the power series
is uniformly bounded as
∣
∣
∣
∣
∣

N
∑

m=0

(α∗)m ϕm√
m!

∣
∣
∣
∣
∣
≤

(
N
∑

m=0

|α|2m

m!

)1/2( N
∑

m=0

|ϕm|2
)1/2

≤e|α|
2/2‖ϕ‖ ≤ eR

2/2‖ϕ‖. (C4)

Hence, the integrand is a uniform limit of a sequence
of continuous functions. This allows us to exchange the
order of the integration and the summation in the second
expression of Eq. C3. We thus obtain

∫

|α|≤R

(

e−|α|2 α
n

√
n!

∞
∑

m=0

(α∗)m ϕm√
m!

)

d2α

=
∞
∑

m=0

(

ϕm√
n!m!

∫

|α|≤R
e−|α|2αn (α∗)m d2α

)

=
∞
∑

m=0








ϕm√
n!m!

∫ R

0
e−r2rn+mrdr ·

∫ 2π

0
ei(n−m)φdφ

︸ ︷︷ ︸

2πδn,m








=
∞
∑

m=0

(

ϕm√
n!m!

∫ R

0
e−r2rn+mrdr 2πδn,m

)

=π
ϕn

n!

∫ R2

0
e−yyndy = πIn(R

2)ϕn, (C5)

where an integration in the polar coordinate system was
carried out with α = reiφ. Concatenating Eqs. C2, C3,
and C5, we find the relation in Eq. C1.

積分と和の交換

TEXについてのノート

I. 発表準備

Ik =
k∑

n=0

|n〉 〈n|

‖Im − Ik‖ =

∥∥∥∥∥

m∑

n=k+1

|n〉 〈n|

∥∥∥∥∥ = 1

∫




f
g
h
...




=





∫
f∫
g∫
h
...





|ϕ〉 =
∑

n

an |n〉 ∈ H

‖(Im − Ik) |ϕ〉 ‖ =

∥∥∥∥∥

m∑

n=k+1

|n〉 〈n| |ϕ〉

∥∥∥∥∥ =

∥∥∥∥∥

m∑

n=k+1

an |n〉

∥∥∥∥∥ =

√√√√
m∑

n=k+1

|an|2 → 0 (k,m → ∞)

⇔
∞∑

n=0

|an|2 < ∞

‖Im − Ik‖ =

∥∥∥∥∥

∞∑

n=K+1

|n〉 〈n|

∥∥∥∥∥ = 1 ‖I − Ik‖ → 0 (k → 0)

∫

D(R)
|α〉〈α| d2α =

∫

D(R)
e−|α|2

∞∑

n=0

∞∑

m=0

αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

(∫

D(R)
e−|α|2/2 αn

√
n!
〈α|ϕ〉d2α

)
|n〉, (1)

∫
|α〉〈α| d2α =

∫
e−|α|2

∞∑

n=0

∞∑

m=0

αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

∞∑

m=0

∫ (
e−|α|2 αnᾱm

√
n!m!

)
d2α|n〉〈m| = π

∞∑

n=0

|n〉 〈n|

=
∞∑

n=0

(∫
e−|α|2/2 αn

√
n!
〈α|ϕ〉d2α

)
|n〉, (2)

9

Appendix F: An Elementary Approach to Exchange
the Order of Integral and Summation for H-valued

Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
∑

n=0

|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α =
∞
∑

n=0

(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and
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Appendix F: An Elementary Approach to Exchange
the Order of Integral and Summation for H-valued

Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
∑

n=0

|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α =
∞
∑

n=0

(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and
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Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
∑

n=0

|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α =
∞
∑

n=0

(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and

⇒

定理

ベクトル値
の積分 

積分値を
要素とした
ベクトル？？

|α⟩ = e−|α|2/2
∞

∑
n=0

αn

n!
|n⟩, α ∈ ℂ



連続関数の一様収束極限は連続 
有限領域の連続関数の積分 
（ベクトル値）リーマン積分が存在

有限領域、冪級数 → 一様収束 
積分と和は交換してよい

積分と和の交換
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Appendix F: An Elementary Approach to Exchange
the Order of Integral and Summation for H-valued

Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)
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∫

D(r)

∞
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|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)
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∞
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n=0

anα
n|n〉

)

d2α =
∞
∑
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(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
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∣
∣
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∣
∣
∣
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where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven
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∞
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where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
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|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
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Similarly, integrals of truncated states in the following
form exist,
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By using the triangle inequality for integrals and
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is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
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TEXについてのノート

I. 発表準備

φ :=

∫

D

∞∑

n=0

anα
n |n〉 d2α ∈ H (1)

φ(N−1) :=

∫

D

N∑

n=0

anα
n |n〉 d2α ∈ H (2)

(3)

Ik =
k∑

n=0

|n〉 〈n|

‖Im − Ik‖ =

∥∥∥∥∥

m∑

n=k+1

|n〉 〈n|

∥∥∥∥∥ = 1

∫




f
g
h
...




=





∫
f∫
g∫
h
...





|ϕ〉 =
∑

n

an |n〉 ∈ H

‖(Im − Ik) |ϕ〉 ‖ =

∥∥∥∥∥

m∑

n=k+1

|n〉 〈n| |ϕ〉

∥∥∥∥∥ =

∥∥∥∥∥

m∑

n=k+1

an |n〉

∥∥∥∥∥ =

√√√√
m∑

n=k+1

|an|2 → 0 (k,m → ∞)

⇔
∞∑

n=0

|an|2 < ∞

‖Im − Ik‖ =

∥∥∥∥∥

∞∑

n=K+1

|n〉 〈n|

∥∥∥∥∥ = 1 ‖I − Ik‖ → 0 (k → 0)

∫

D(R)
|α〉〈α| d2α =

∫

D(R)
e−|α|2

∞∑

n=0

∞∑

m=0

αnᾱm

√
n!m!

|n〉〈m|d2α

=
∞∑

n=0

(∫

D(R)
e−|α|2/2 αn

√
n!
〈α|ϕ〉d2α

)
|n〉, (4)

TEXについてのノート
I. 発表準備
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∥∥∥+
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∥∥∥
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Schwartz’s inequality, we obtain

‖φ− φ(N)‖ =

∥
∥
∥
∥
∥

∫

D(r)

(
∞
∑

n=N

anα
n|n〉

)

d2α

∥
∥
∥
∥
∥

≤
∫

D(r)

∥
∥
∥
∥
∥

∞
∑

n=N

anα
n|n〉

∥
∥
∥
∥
∥
d2α

=

∫

D

(
∞
∑

n=N

|an|2 |α|2n
)1/2

d2α

≤|D|1/2
(
∫

D

∞
∑

n=N

|an|2 |α|2nd2α.

)1/2

(F14)

Since the integral in the last expression vanishes as
N → ∞ due to Eq. (F9), the sequence of states (φ(N))
converges to φ:

‖φ− φ(N)‖ → 0 (N → ∞). (F15)

Next, let us define

C ' bn :=

∫

D
anα

nd2α. (F16)

We can readily show that the sequence (bn) is square-
summable as follows: Due to Schwartz’s inequality it
holds

|bn| =
∣
∣
∣
∣

∫

D
anα

nd2α

∣
∣
∣
∣
≤
∫

D
|anαn| d2α

≤|D|1/2
√
∫

D
|anαn|2 d2α. (F17)

Then, use of Eq. (F9) yields

∑

n

|bn|2 ≤|D|
∑

n

∫

D
|anαn|2 d2α < ∞. (F18)

Therefore, the state vector in the form of

ψ :=
∞
∑

n=0

bn |n〉 =
∞
∑

n=0

(∫

D
anα

nd2α

)

|n〉 , (F19)

exists in H as well as its truncated states

ψ(N−1) :=
N
∑

n=0

bn |n〉 =
N
∑

n=0

(∫

D
anα

nd2α

)

|n〉 . (F20)

Obviously, (ψ(N)) defines a Cauchy sequence converges
to ψ in H,

‖ψ − ψ(N)‖ → 0 (N → ∞). (F21)

In turn, another obvious fact is ‖φ(N)−ψ(N)‖ = 0 as the
summations in Eq. (F13) and Eq. (F20) are finite.
Finally combining Eqs. (F15) and (F21) with the fol-

lowing triangular inequality

‖φ− ψ‖ =
∥
∥
∥φ− φ(N) + φ(N) − ψ(N) + ψ(N) − ψ

∥
∥
∥

≤
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥φ(N) − ψ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥

=
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥ ,

we obtain

‖φ− ψ‖ =
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥→ 0 (N → ∞).

(F22)

This relation implies the conclusion of our theorem

∫

D

∞
∑

n=0

ϕn (α) |n〉 d2α =
∞
∑

n=0

(∫

D
ϕn (α) d

2α

)

|n〉 .

(F23)

[1] S. Twareque Ali, J.-P. Antoine, J.-P. Gazeau, and
U. Mueller, Coherent states and their generalizations: a
mathematical overview, Reviews in Mathematical Physics
7, 1013 (1995).

[2] J.-P. Antoine, Coherent states and wavelets, a contem-
porary panorama, in Operator Algebras and Mathematical
Physics, edited by T. Bhattacharyya and M. A. Dritschel
(Springer International Publishing, Cham, 2015) pp. 123–
156.

[3] P. L. Garcia de Leon, Coherent state quantization for
conjugated variables, NNT: 2008PEST0210 tel-00432055
(2008).

[4] F. Parisio, Off-Center Coherent-State Representation and
an Application to Semiclassics, Prog. Theor. Phys. 124,
53 (2010).

[5] J. R. Klauder, Problem 1.5, 2006 Norway lectures,
https://www.phys.ufl.edu/ klauder/norway/ .

[6] O. Christensen, Frame, riesz bases, and discrete ga-
bor/wavelet expansions, Bull.Amer.Math.Soc. 38, 273

Theorem 18, arXiv:2402.0831



有限領域、冪級数 → 一様収束 
積分と和は交換してよい

積分と和の交換

9

Appendix F: An Elementary Approach to Exchange
the Order of Integral and Summation for H-valued

Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
∑

n=0

|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α =
∞
∑

n=0

(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and

9

Appendix F: An Elementary Approach to Exchange
the Order of Integral and Summation for H-valued

Integrals Associated with Power Series

Here we will show a type of the dominated conver-
gence theorem for H-valued integrals when an associated
sequence of functions is given by a power series. This the-
orem is proven to verify the relation in Eq. C2 without in-
voking neither the Bochner integral nor the Lebesgue in-
tegral. Its generalized version is Theorem 16, whose proof
necessitates the Bochner integrability and the monotone
convergence theorem.

Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
∞
∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
∑

n=0

|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that

∫

D(r)

(
∞
∑
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anα
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anα

nd2α
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|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and
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sequence of functions is given by a power series. This the-
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Theorem 18. Let H = !2 and (|n〉)∞n=0 be an orthonor-
mal basis on H. Let be D(r) := {α ∈ C | |α| ≤ r } and
∑n

k=0 akα
k be a power series which fulfills

(i)
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∑

n=0

|an|2 |α|2n < ∞, α ∈ D(r), (F1)

(ii)

∫

D(r)

∞
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|an|2 |α|2n d2α < ∞. (F2)

Then, it holds that
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D(r)

(
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∑

n=0

anα
n|n〉

)

d2α =
∞
∑

n=0

(
∫

D(r)
anα

nd2α

)

|n〉.

(F3)

Remark 19. The area D is not necessary in the form of
the disk. We merely use the condition |D| =

∫

D d2α <
∞.

Remark 20. For the verification of the relation in
Eq. (C2), one may proceed to define the form of the state

family as |ϕα〉 :=
∑∞

n=0 e
−|α|2/2anαn|n〉 instead of the

form in Eq. (F10).

Proof. Let us define

Mn := |an|2|r|2n, (F4)

gn(α) :=
n
∑

k=0

|ak|2|α|2k, f(α) := lim
n→∞

gn(α). (F5)

Let us note that the condition (i) implies
∑

n Mn is con-
vergent and that the following inequality holds

|gn(α)− gm(α)| ≤
m
∑

k=n+1

Mk. (F6)

This means the sequence of functions (gn)n converges to
f uniformly, namely,

(∀ε > 0)∃N > 0; (∀n ≥ N) sup
α∈D

|f(α)− gn(α)| < ε.

(F7)

Therefore, we can exchange the order of the integration
and infinite summation as there exists a sufficiently large
N > 0 such that for n ≥ N it holds

∣
∣
∣
∣
∣

∫

D
f(α)d2α−

n
∑

k=0

∫

D
|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

D
f(α)d2α−

∫

D
gn(α)d

2α

∣
∣
∣
∣

≤
∫

D
|f(α)− gn(α)| d2α < |D| ε, (F8)

where we use the fact that a finite summation and an
integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and

⇒

定理

有限和なら 
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∞
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∫
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∞.
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N > 0 such that for n ≥ N it holds
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∣
∣
∣
∣
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|ak|2 |α|2k d2α

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
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∣
∣
∣
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where we use the fact that a finite summation and an
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is nothing more than the term-wise integrability of a
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integration are commutable due to the linearity of inte-
grals in the first line, and the first inequality in the final
line is due to the triangle inequality for integrals. Thus
far we have proven

∫

D

∞
∑

k=0

|ak|2 |α|2k d2α =
∞
∑

k=0

∫

D
|ak|2 |α|2k d2α < ∞,

(F9)

where the finiteness is due to the condition (ii). This
is nothing more than the term-wise integrability of a
power series. We will associate this relation to the square
summable property in the number space H.

Let us remind that a convergent power series defines a
continuous function. This imples the following family of
state vectors

|ϕα〉 :=
∞
∑

n=0

anα
n|n〉 ∈ H (F10)

is continuous with respect to α ∈ D(r), that is, it holds

‖ |ϕα〉 − |ϕβ〉 ‖ → 0 (|α− β| → 0) . (F11)

Therefore, its integral over the area D is well-defined (as
the limit of a Riemann sum):

φ :=

∫

D(r)
|ϕα〉 d2α =

∫

D(r)

(
∞
∑

n=0

anα
n|n〉

)

d2α. (F12)

Similarly, integrals of truncated states in the following
form exist,

φ(N−1) :=

∫

D

N
∑

n=0

anα
n |n〉 d2α. (F13)

By using the triangle inequality for integrals and
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
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∞∑
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n!m!

|n〉〈m|d2α
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∞∑
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(∫

D(R)
e−|α|2/2 αn

√
n!
〈α|ϕ〉d2α
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|n〉, (4)
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∥∥∥
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D
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D
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∞∑
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Ik =
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∥∥∥∥∥
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Schwartz’s inequality, we obtain

‖φ− φ(N)‖ =

∥
∥
∥
∥
∥

∫

D(r)

(
∞
∑

n=N

anα
n|n〉

)

d2α

∥
∥
∥
∥
∥

≤
∫

D(r)

∥
∥
∥
∥
∥

∞
∑

n=N

anα
n|n〉

∥
∥
∥
∥
∥
d2α

=

∫

D

(
∞
∑

n=N

|an|2 |α|2n
)1/2

d2α

≤|D|1/2
(
∫

D

∞
∑

n=N

|an|2 |α|2nd2α.

)1/2

(F14)

Since the integral in the last expression vanishes as
N → ∞ due to Eq. (F9), the sequence of states (φ(N))
converges to φ:

‖φ− φ(N)‖ → 0 (N → ∞). (F15)

Next, let us define

C ' bn :=

∫

D
anα

nd2α. (F16)

We can readily show that the sequence (bn) is square-
summable as follows: Due to Schwartz’s inequality it
holds

|bn| =
∣
∣
∣
∣

∫

D
anα

nd2α

∣
∣
∣
∣
≤
∫

D
|anαn| d2α

≤|D|1/2
√
∫

D
|anαn|2 d2α. (F17)

Then, use of Eq. (F9) yields

∑

n

|bn|2 ≤|D|
∑

n

∫

D
|anαn|2 d2α < ∞. (F18)

Therefore, the state vector in the form of

ψ :=
∞
∑

n=0

bn |n〉 =
∞
∑

n=0

(∫

D
anα

nd2α

)

|n〉 , (F19)

exists in H as well as its truncated states

ψ(N−1) :=
N
∑

n=0

bn |n〉 =
N
∑

n=0

(∫

D
anα

nd2α

)

|n〉 . (F20)

Obviously, (ψ(N)) defines a Cauchy sequence converges
to ψ in H,

‖ψ − ψ(N)‖ → 0 (N → ∞). (F21)

In turn, another obvious fact is ‖φ(N)−ψ(N)‖ = 0 as the
summations in Eq. (F13) and Eq. (F20) are finite.
Finally combining Eqs. (F15) and (F21) with the fol-

lowing triangular inequality

‖φ− ψ‖ =
∥
∥
∥φ− φ(N) + φ(N) − ψ(N) + ψ(N) − ψ

∥
∥
∥

≤
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥φ(N) − ψ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥

=
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥ ,

we obtain

‖φ− ψ‖ =
∥
∥
∥φ− φ(N)

∥
∥
∥+

∥
∥
∥ψ(N) − ψ

∥
∥
∥→ 0 (N → ∞).

(F22)

This relation implies the conclusion of our theorem

∫

D

∞
∑

n=0

ϕn (α) |n〉 d2α =
∞
∑

n=0

(∫

D
ϕn (α) d

2α

)

|n〉 .

(F23)
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Since the integral in the last expression vanishes as
N → ∞ due to Eq. (F9), the sequence of states (φ(N))
converges to φ:

‖φ− φ(N)‖ → 0 (N → ∞). (F15)

Next, let us define

C ' bn :=

∫

D
anα

nd2α. (F16)

We can readily show that the sequence (bn) is square-
summable as follows: Due to Schwartz’s inequality it
holds

|bn| =
∣
∣
∣
∣

∫

D
anα

nd2α

∣
∣
∣
∣
≤
∫

D
|anαn| d2α
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√
∫

D
|anαn|2 d2α. (F17)

Then, use of Eq. (F9) yields
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|bn|2 ≤|D|
∑
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∫
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|anαn|2 d2α < ∞. (F18)

Therefore, the state vector in the form of

ψ :=
∞
∑
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bn |n〉 =
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n=0

(∫
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anα

nd2α

)

|n〉 , (F19)

exists in H as well as its truncated states

ψ(N−1) :=
N
∑

n=0

bn |n〉 =
N
∑

n=0

(∫

D
anα

nd2α

)

|n〉 . (F20)

Obviously, (ψ(N)) defines a Cauchy sequence converges
to ψ in H,

‖ψ − ψ(N)‖ → 0 (N → ∞). (F21)

In turn, another obvious fact is ‖φ(N)−ψ(N)‖ = 0 as the
summations in Eq. (F13) and Eq. (F20) are finite.
Finally combining Eqs. (F15) and (F21) with the fol-

lowing triangular inequality
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∥
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∥
∥
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∥
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∥
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∥
∥
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∥
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ψ :=
∞∑

n=0

bn |n〉 ∈ H

ψ(N−1) :=
N∑

n=0

bn |n〉 ∈ H (1)

∫

D(R)
|α〉〈α|ϕ〉d2α =

∫

D(R)
e−|α|2/2

∞∑

n=0

αn

√
n!
|n〉

∞∑

m=0

ᾱm

√
m!

∞〈m|ϕ〉d2α

=
∞∑

n=0

(∫

D(R)
e−|α|2/2 α

n

√
n!
〈α|ϕ〉d2α

)
|n〉,

(2)

連続関数の一様収束極限は連続 
有限領域の連続関数の積分 
（ベクトル値）リーマン積分が存在
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when the integration volume is finite. In fact, Schwartz
inequality helps us to obtain

∫

D
‖ |fα〉 ‖d2α ≤

√
∫

D
d2α

√
∫

D
‖|fα〉‖2 d2α|

=|D|1/2
√
∫

D
‖|fα〉‖2 d2α| < ∞, (A17)

where D is assumed to be a compact region on C.

Appendix B: elementary integration

Let us define

In(R) :=

∫ R

0

yne−y

n!
dy, (n = 0, 1, 2, . . . ). (B1)

As the integrand is positive, it holds In (R) ≥ 0 forR > 0.
Integration by parts yeilds

In (R) = In−1 (R)−
Rne−R

n!
. (B2)

This relation leads to

In (R) ≤ In−1 (R) . (B3)

We can readily confirm

I0 (R) =

∫ R

0
e−ydy = 1− e−R ≤ 1. (B4)

Let χ[0,R] be the characteristic function on the interval
[0, R]. Applying the monotone convergence theorem to
the sequence of functions fm(y) = e−yχ[0,m](y), we have
∫

R

lim
m→∞

fm(y)dy = lim
R→∞

I0 (R) = lim
R→∞

(

1− e−R
)

= 1.

(B5)

Now, let us define

f (n)
m (y) = (n!)−1yne−yχ[0,m](y). (B6)

For n = 1, from Eq. (B2) and the monotone convergence
theorem, we obtain
∫

R

lim
m→∞

f (1)
m (y)dy = lim

R→∞
I1 (R)

= lim
R→∞

(

I0 (R)−Re−R
)

= 1. (B7)

Repeating this process for n = 2, 3, 4, . . . , we obtain
∫

R

lim
m→∞

f (n)
m (y)dy = lim

R→∞
In (R)

= lim
R→∞

(

In−1 (R)−
Rne−R

n!

)

= 1.

(B8)

Note that Eqs. (B3) and (B4) readily imply

|1− In(R)| < 1, (R ≥ 0). (B9)

Appendix C: detail of calculation

Here, we show the following relation:
∫

D(R)
|α〉〈α|ϕ〉d2α = π

∞
∑

n=0

In(R
2)ϕn |n〉 . (C1)

Let be D(r) = {α ∈ C | |α| ≤ r }. The number state
expansion of |α〉 in Eq. (6) implies
∫

D(R)
|α〉〈α|ϕ〉d2α =

∫

D(R)
e−|α|2/2

∞∑

n=0

αn

√
n!
|n〉〈α|ϕ〉d2α

=
∞
∑

n=0

(
∫

D(R)
e−|α|2/2 α

n

√
n!
〈α|ϕ〉d2α

)

|n〉,

(C2)

where in the last line we use Theorem 16 in Appendix E
to exchange the order of integration and summation for
H-valued terms (Note that the assumptions of Theo-
rem 16 are fulfilled as | 〈α|ϕ〉 | is uniformly bounded).
Now, let us consider the following integration:

∫

D(R)
e−|α|2/2 α

n

√
n!
〈α|ϕ〉d2α

=

∫

|α|≤R

(

e−|α|2 α
n

√
n!

∞
∑

m=0

(α∗)m ϕm√
m!

)

d2α. (C3)

Using Schwartz’s inequality, we can show the power series
is uniformly bounded as
∣
∣
∣
∣
∣

N
∑

m=0

(α∗)m ϕm√
m!

∣
∣
∣
∣
∣
≤

(
N
∑

m=0

|α|2m

m!

)1/2( N
∑

m=0

|ϕm|2
)1/2

≤e|α|
2/2‖ϕ‖ ≤ eR

2/2‖ϕ‖. (C4)

Hence, the integrand is a uniform limit of a sequence
of continuous functions. This allows us to exchange the
order of the integration and the summation in the second
expression of Eq. C3. We thus obtain

∫

|α|≤R

(

e−|α|2 α
n

√
n!

∞
∑

m=0

(α∗)m ϕm√
m!

)

d2α

=
∞
∑

m=0

(

ϕm√
n!m!

∫

|α|≤R
e−|α|2αn (α∗)m d2α

)

=
∞
∑

m=0








ϕm√
n!m!

∫ R

0
e−r2rn+mrdr ·

∫ 2π

0
ei(n−m)φdφ

︸ ︷︷ ︸

2πδn,m








=
∞
∑

m=0

(

ϕm√
n!m!

∫ R

0
e−r2rn+mrdr 2πδn,m

)

=π
ϕn

n!

∫ R2

0
e−yyndy = πIn(R

2)ϕn, (C5)

where an integration in the polar coordinate system was
carried out with α = reiφ. Concatenating Eqs. C2, C3,
and C5, we find the relation in Eq. C1.

積分と和の交換

• Riemann 積分：一様収束を証明すればよい。 
• Lebesgue 積分：優収束定理などを使用できる。 

•Bochner 積分 : Banach空間に値をとる積分 
優収束定理を使用できる 
ベクトル値 
作用素値 

数列空間で作業していたのに、関数空間の知識が必要になるのは残念 
スモールエル２で作業していたのに、ラージエル２

L2[ℂ, ℓ2] ∫ ∥|α⟩⟨α |φ⟩∥2d2α < ∞ ℋ値可積分

∫ ∥|α⟩⟨α |∥2d2α = ∞ 作用素値可積分でない

• ノルムが可積分なら存在確定

L2[ℂ, ℬ(ℋ)]

I s= ∫α∈ℂ

1
π

|α⟩⟨α |d2αS



• 単調性があれば弱収束から強収束へ持っていける 
• 射影でない族でもよい

Klauder の講義ノートによる別証明

⟨ϕ |An |φ⟩ := π−1 ∫|α|≤n
⟨ϕ |α⟩⟨α |φ⟩d2α,

0 ≤ An ≤ I かつ An ≤ An+1 かつ　 lim
n→∞

⟨ϕ | I − An |ψ⟩ = 0

⇒ lim
n→∞

∥(I − An)ψ⟩∥ = 0

定理

として、弱収束を証明する。 
上記の定理の条件を満たすことを示せば、強収束が証明できる

Suggested Problems 1.5 (2006年) 
http://www.phys.ufl.edu/~klauder/norway/



まとめ
• 作用素の収束、３種類 
• 完全性条件は強収束 
• 初等的な証明 
• Bochner積分は便利 
• Klauderによる別証明

R. Namiki arXiv:2402.0831

|α⟩ = e−|α|2/2
∞

∑
n=0

αn

n!
|n⟩, α ∈ ℂ

|ϕ⟩ = 1
π ∫α∈ℂ

|α⟩⟨α |ϕ⟩d2α |ϕ⟩ =
∞

∑
n=0

|n⟩⟨n |ϕ⟩c.f.s

I s=
∞

∑
n=0

|n⟩⟨n |


