一般確率論と量子論基礎

高倉 龍 京都大学 基礎物理学研究所

Introduction

量子論基礎(量子基礎論):

- 量子論の特徴(「量子性」)は何か?
- なぜ量子論で世界は記述できるのか?

方針①

量子論の公理を仮定し量子論の限界を探る (不確定性関係, etc.)

方針②

量子論を含むより一般的な枠組みを考え量子論の特徴を調べる

Introduction

- * general → generalized probabilistic → probability
- ** 1963年のMackeyの講義録に (4) 似た定式化が掲載(但し量子 論理の文脈)
- 一般確率論(General Probabilistic Theories; GPTs)

量子論を含む一般的な枠組みの1つ(量子論の一般化). 操作的に自然な公理・実験的な事実に基づく量子論(Hilbert空間)の"導出"や"更なる理解"を得るために創始.

[大まかな歴史] -

[1,2,3など]

- 1964年~60年代後半にかけて Günther Ludwig (とそのグループ)により創始** → ^{現代で用いるGPISの} 定式化は1964年に完成
- 1970年にDavies, Lewis が(恐らくLudwigらとは独立に)同じ定式化を量子論の操作論的一般化として採用 → 70年代前半にEdwards, Gudderらにより発展 [6,7,8など] (←こっちの方が読み易い(?))
- 1980年代~90年代は特にめぼしい発展はない(?)

[9,10,11]

- 2000年代にHardy, Barnum, Barrettらが(量子)情報理論的な観点をGPTsに持ち込む
- → 2010年代~は情報理論のみならず他の様々な(量子基礎論的な)観点が持ち込まれ現在も発展 (具体的な文献は[12-16など]参照)

Introduction

一般確率論(General Probabilistic Theories; GPTs)

量子論を含む一般的な枠組みの1つ(量子論の一般化). 操作的に自然な公理・実験的な事実に基づく量子論(Hilbert空間)の"導出"や"更なる理解"を得るために創始.

本講演では,

- GPTsの数学的基礎・定式化
- (簡単なモデルで)量子論の"導出" · "更なる理解"

について説明する.

Contents

1. Introduction

2. Mathematical formulations (state spaceを軸とする定式化)

3. Specific theories and results

4. Summary

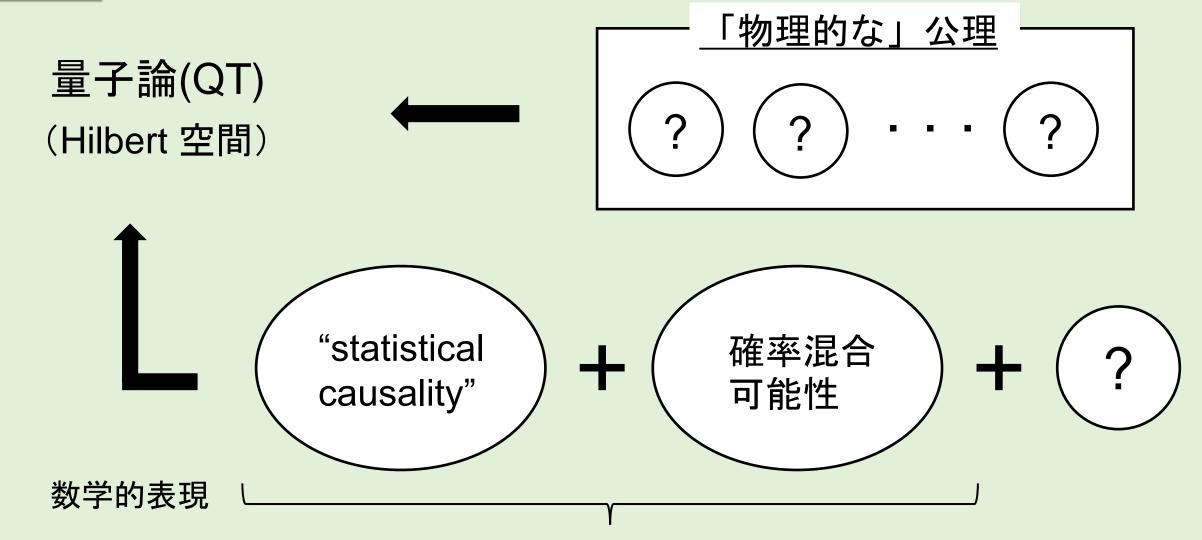
Contents

1. Introduction

2. Mathematical formulations

3. Specific theories and results

4. Summary



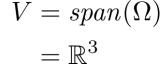
一般確率論 (GPTs) (特にGPTsは量子論を含む)

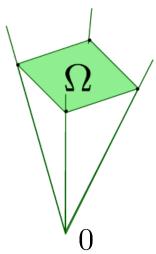
Simple* formulation of a GPT

statistical causality + 確率混合可能性 (+ minorな公理)

- $\Omega:\ V:=\mathbb{R}^{N+1}$ 内のコンパクト凸集合 s.t. $span(\Omega)=V,\ 0\notin\Omega;$
- $\mathcal{E}_{\Omega}: V^*(\simeq V)$ 内の部分集合 $[0,u]:=\{e\in V^*\mid 0\leq e\leq u\}$,但し $e\leq f\iff (f-e)(\omega)\geq 0 \ (\forall\omega\in\Omega), \ u(\omega)=1 \ (\forall\omega\in\Omega)$

の組 $(\Omega, \mathcal{E}_{\Omega})$ を 一般確率論 (a *GPT*) という. 集合 $(\Omega, \mathcal{E}_{\Omega})$ をそれぞれ state space, effect space と呼び、元 $u \in V^*$ を unit effect と呼ぶ.





*簡単のため、上記の公理に加え幾つかの数学的(物理的に自然でない?)仮定を課している.

Simple* formulation of a GPT

- $\Omega: V:=\mathbb{R}^{N+1}$ 内のコンパクト凸集合 s.t. $span(\Omega)=V,\ 0\notin\Omega;$
- $\mathcal{E}_\Omega:V^*(\simeq V)$ 内の部分集合 $[0,u]:=\{e\in V^*\mid 0\leq e\leq u\}$,但し

$$e \leq f \iff (f-e)(\omega) \geq 0 \quad (\forall \omega \in \Omega), \quad u(\omega) = 1 \quad (\forall \omega \in \Omega)$$

e.g.) (有限次元)量子論

$$\mathcal{H} = \mathbb{C}^d \ (d < \infty),$$

$$\begin{cases} \Omega = \Omega_{\mathrm{QT}}(\mathcal{H}) = \{ \rho \in \mathcal{L}_S^+(\mathcal{H}) \mid \rho \ge 0, \mathrm{Tr}[\rho] = 1 \} \end{cases} \longrightarrow$$

$$\mathcal{E}_{\Omega} = \{ E \in \mathcal{L}_S^+(\mathcal{H}) \mid O \le E \le I \}$$

majorな公理 1: statistical causality

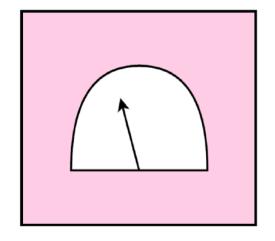
18,19] **←**

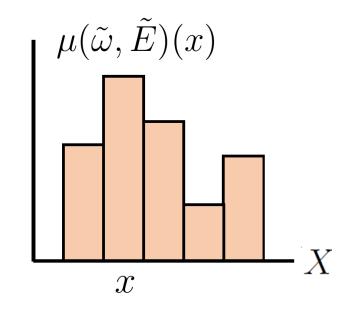
この現象をベクトル空間(凸集合)の言葉 で表現したもの = GPTs

preparation

measurement

probabilities





$$\tilde{\omega} \in \tilde{\Omega}$$

state

$$\tilde{E} \in \tilde{\mathcal{O}}$$

observable

stateとobservableは 確率分布を定める

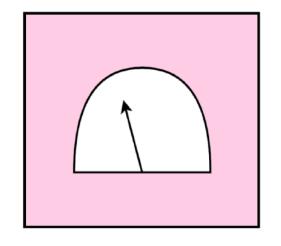
majorな公理 1: statistical causality

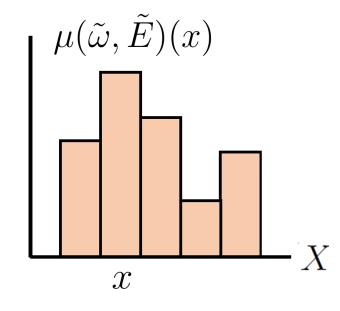
※ 今回は effect は写像として定義する

preparation

measurement

probabilities





$$\tilde{\omega} \in \tilde{\Omega}$$

state

$$\tilde{E} = \{\tilde{e}_x\}_{x \in X}$$

$$\sum_{x \in X} \tilde{e}_x(\tilde{\omega}) = 1 \quad (\forall \tilde{\omega} \in \tilde{\Omega})$$

$$ilde{e}_x = \mu(\cdot, ilde{E})(x)$$
 effect

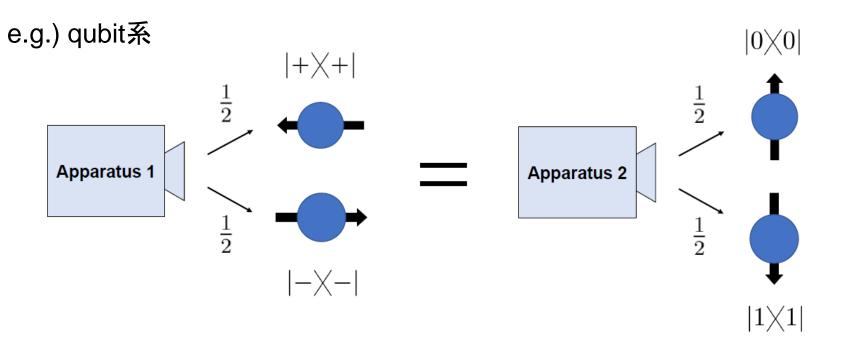
$$\tilde{e}_x \in \tilde{\mathcal{E}} : \tilde{\omega} \mapsto \mu(\tilde{\omega}, \tilde{E})(x)$$

minorな公理 1: separation axiom

※ 今回は effect は写像として定義する

 $\tilde{e}(\tilde{\omega}_1) = \tilde{e}(\tilde{\omega}_2) \ (\forall \tilde{e} \in \tilde{\mathcal{E}}) \Rightarrow \tilde{\omega}_1 = \tilde{\omega}_2$ $(\tilde{\omega}_1 \neq \tilde{\omega}_2 \Rightarrow \exists \tilde{e} \in \tilde{\mathcal{E}} \text{ s.t. } \tilde{e}(\tilde{\omega}_1) \neq \tilde{e}(\tilde{\omega}_2))$

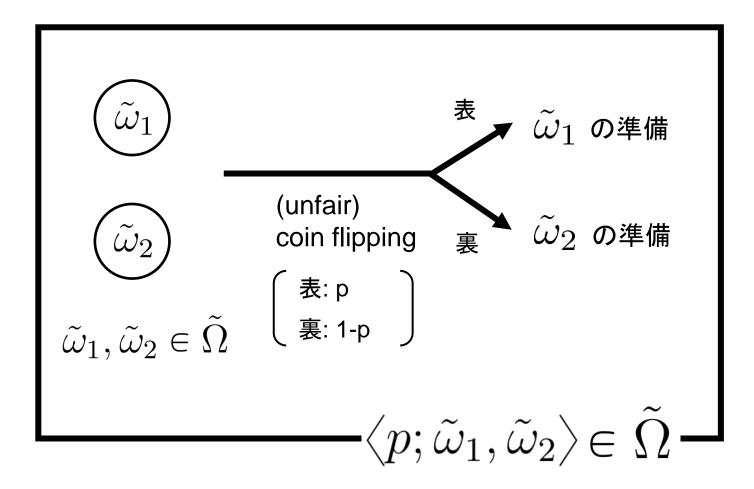
[20]



状態準備の"context" を無視する

(確率だけに着目する)

majorな公理2:確率混合可能性[7,8,7]



measurement

$$\widetilde{e}\left(\langle p; \widetilde{\omega}_1, \widetilde{\omega}_2 \rangle\right)$$

$$= p\widetilde{e}(\widetilde{\omega}_1) + (1 - p)\widetilde{e}(\widetilde{\omega}_2)$$

$$(\forall \widetilde{e} \in \widetilde{\mathcal{E}})$$

majorな公理 2:確率混合可能性^{[7,8}

有限個の状態 $\{\tilde{\omega_i}\}_{i=1}^n\subset \tilde{\Omega}$ と確率分布 $\{p_i\}_{i=1}^n$ に対し、

$$\tilde{e}(\langle p_1, \cdots, p_n; \ \tilde{\omega_1}, \cdots, \tilde{\omega_n} \rangle) = \sum_{i=1}^n p_i \tilde{e}(\tilde{\omega_i}) \quad (\forall \tilde{e} \in \tilde{\mathcal{E}})$$

を満たす状態 $\langle p_1, \cdots, p_n; \tilde{\omega_1}, \cdots, \tilde{\omega_n} \rangle \in \tilde{\Omega}$ が存在する.

 \longrightarrow effect \tilde{e} it "affine" function: $Aff(\tilde{\Omega},\mathbb{R}):=\{\tilde{f}\colon \tilde{\Omega}\to\mathbb{R}\mid \mathrm{affine}\} \supset \tilde{\mathcal{E}}$

$$\tilde{f}(\langle p; \tilde{\omega}_1, \tilde{\omega}_2 \rangle) = p\tilde{f}(\tilde{\omega}_1) + (1-p)\tilde{f}(\tilde{\omega}_2) \ (\forall p \in [0, 1], \ \forall \tilde{\omega}_1, \tilde{\omega}_2 \in \tilde{\Omega})$$

を満たす関数 $\tilde{f}: \tilde{\Omega} \to \mathbb{R}$ を affine function といい、 $\tilde{\Omega}$ 上の affine function 全体の集合を $Aff(\tilde{\Omega},\mathbb{R}) := \{\tilde{f}: \tilde{\Omega} \to \mathbb{R} \mid \text{affine}\}$ と書く.

<u>数学的な仮定 1: no-restriction hypothesis</u>

Effect space $\tilde{\mathcal{E}}$ は集合 $\tilde{\mathcal{E}}_{\tilde{\Omega}} := \{\tilde{g} \colon \tilde{\Omega} \to \mathbb{R} \mid \text{affine}, \ \tilde{g}(\tilde{\omega}) \in [0,1]\}$ と一致する: $\tilde{\mathcal{E}} = \tilde{\mathcal{E}}_{\tilde{\Omega}}.$

$$Aff(\tilde{\Omega},\mathbb{R}):=\{\tilde{f}\colon \tilde{\Omega}\to\mathbb{R}\mid \mathrm{affine}\}$$
 「物理的な」effect し し $\tilde{\mathcal{E}}_{\tilde{\Omega}}:=\{\tilde{g}\colon \tilde{\Omega}\to\mathbb{R}\mid \mathrm{affine},\ \tilde{g}(\tilde{\omega})\in[0,1]\}$:「数学的な」effect 全体 $=\tilde{\mathcal{E}}$

"数学的に許される effect は全て物理的に許される" (→量子論でも仮定される)

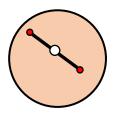
ベクトル空間への埋め込み

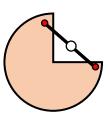
(up to an isomorphism)

以下の条件を満たすベクトル空間 V と単射 $J:\Omega \to V$ が存在:

- $J(\langle p; \tilde{\omega}_1, \tilde{\omega}_2 \rangle) = pJ(\tilde{\omega}_1) + (1-p)J(\tilde{\omega}_2) \quad (\forall p \in [0, 1], \ \tilde{\omega}_1, \tilde{\omega}_2 \in \tilde{\Omega}),$
- $span(J(\tilde{\Omega})) = V, \ 0 \notin J(\tilde{\Omega}). \longrightarrow span(\Omega) = V, \ 0 \notin \Omega$

凸でない





$$V = Aff(\tilde{\Omega}, \mathbb{R})^*$$
 (双対), $J \colon \tilde{\Omega} \to Aff(\tilde{\Omega}, \mathbb{R})^*$ by $J(\tilde{\omega}) \colon Aff(\tilde{\Omega}, \mathbb{R}) \to \mathbb{R}$ (線形に拡張) とすればよい. $\tilde{f} \mapsto \tilde{f}(\tilde{\omega})$

ightarrow Ω を V 内の <u>凸集合</u> $\Omega:=J(\Omega)$ (state space) と同一視. $(J(\tilde{\omega})$ を ω と書くと、1つ目の条件は $p\omega_1 + (1-p)\omega_2 \in \Omega$ を意味)

(unit effect)

$$u(\omega) = 1 \ (\forall \omega \in \Omega)$$

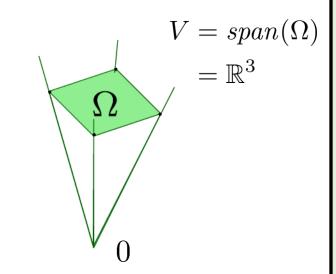
ightarrow を V^* 内の部分集合 $\mathcal{E}_{\Omega}=[0,u]:=\{e\in V^*\mid 0\leq e\leq u\}$ (effect space) と同一視.

$$\widetilde{\mathcal{E}} = \widetilde{\mathcal{E}}_{\widetilde{\Omega}} = \{\widetilde{g} \colon \widetilde{\Omega} \to \mathbb{R} \mid \text{affine}, \ \widetilde{g}(\widetilde{\omega}) \in [0, 1]\}$$

<u>数学的な仮定 2: finite dimensionality</u>

ベクトル空間 V の次元は有限:

$$\dim V = N + 1 \quad (N < \infty).$$

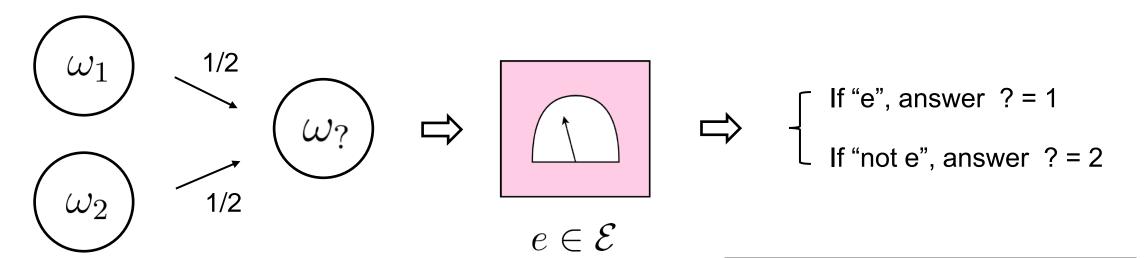


- $span(\Omega)=V,\ 0\notin\Omega$ より、 Ω の"次元"はN $(\dim aff(\Omega)=N).$
- N は状態の特定に必要な effect ("fiducial measurement") の最小数に一致する.
- → 有限次元性の仮定 = 有限個の測定で state tomography ができる
- e.g.) qubit 系
 - Ω は \mathbb{R}^4 内の3次元球 (Bloch球) o 3種類の測定により状態が特定できる.

位相(距離)の導入

*他にも様々な位相の導入の仕方がある ("物理的位相"など)

今回は state discrimination を介して位相(距離) を導入する:



$$\omega_1, \omega_2 \in \Omega$$

$$p_{\text{success}}(e; \omega_1, \omega_2)$$

$$= \frac{1}{2}e(\omega_1) + \frac{1}{2}(1 - e(\omega_2))$$

位相(距離)の導入

$$p_{\text{success}}(e; \omega_1, \omega_2) \longrightarrow p_{\text{opt}}(\omega_1, \omega_2) := \sup_{e \in \mathcal{E}} p_{\text{success}}(e; \omega_1, \omega_2)$$

$$lpha$$
 $p_{
m opt}(\omega_1,\omega_2)\geqslant rac{1}{2}$ ($e=u$ とすれば $p_{
m success}(e;\omega_1,\omega_2)=rac{1}{2}$)

$$d(\omega_1,\omega_2):=4\left(p_{\mathrm{opt}}(\omega_1,\omega_2)-rac{1}{2}
ight)$$
 により (Ω,d) は距離空間となる.

数学的な仮定3:完備性[8]

 (Ω,d) は完備距離空間:

$$\lim_{n,m\to\infty} d(\omega_n,\omega_m) = 0 \quad \Rightarrow \quad \exists \omega \in \Omega \text{ s.t. } \lim_{n\to\infty} d(\omega_n,\omega) = 0.$$

- 物理的には、無限個の混合・無理数係数の混合を認めることに対応.
- $\|\omega_1-\omega_2\|=d(\omega_1,\omega_2)$ となる"良い"ノルム (base norm) が $V=span(\Omega)$ に導入できる
- $ightarrow (V,\|\cdot\|)$ は完備ノルム空間 (base norm Banach空間)
- $ightarrow (V,\|\cdot\|)$ は \mathbb{R}^{N+1} と同一視できる (通常の Euclid 位相).
- Ω が $V=\mathbb{R}^{N+1}$ 内のコンパクト凸集合であることも示せる

「端点: pure state

それ以外の点: mixed state

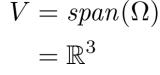
Simple* formulation of a GPT

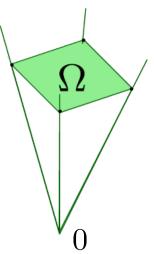
statistical causality + 確率混合可能性 (+ minorな公理)

-
$$\Omega$$
: $V:=\mathbb{R}^{N+1}$ 内のコンパクト凸集合 s.t. $span(\Omega)=V,\ 0\notin\Omega;$

-
$$\mathcal{E}_{\Omega}: V^*(\simeq V)$$
 内の部分集合 $[0,u]:=\{e\in V^*\mid 0\leq e\leq u\}$,但し $e\leq f\iff (f-e)(\omega)\geq 0 \ (\forall\omega\in\Omega), \quad u(\omega)=1 \ (\forall\omega\in\Omega)$

の組 $(\Omega, \mathcal{E}_{\Omega})$ を 一般確率論 (a *GPT*) という. 集合 $(\Omega, \mathcal{E}_{\Omega})$ をそれぞれ state space, effect space と呼び、元 $u \in V^*$ を unit effect と呼ぶ.





^{*}簡単のため、上記の公理に加え幾つかの数学的(物理的に自然でない?)仮定を課している.

その他

[7,8,21]

- 今回紹介した表現定理は Stone-Gudder 流の埋め込みに沿ったもの (他の表現の仕方もある).

[25-28など]

- 今回は effect space の物理的構造 (effect algebra) には触れず、単に state space 上の関数の集合としての導入を行った.
- no-restriction hypothesis がない場合,effect space \mathcal{E} は \mathcal{E}_{Ω} の(幾つかの物理的公理を満たす) 部分集合となる.

[13,14]

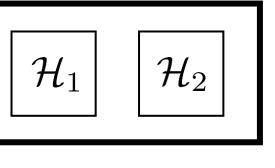
- 無限次元の場合でもほぼ同様の定式化 (R^N が base norm Banach space とかになる)ができる.
- observable $\rightarrow \{e_i\}_i$ s.t. $\sum_i e_i = u$ (より正確には normalized effect-valued measure)で定義.
- 古典(情報理)論も GPTs の枠組みで記述できる:

(確率)単体

$$\Omega_{\rm CT}(N+1) = \{(p_1, \dots, p_{N+1}) \mid \sum_{i=1}^{N+1} p_i = 1\}.$$

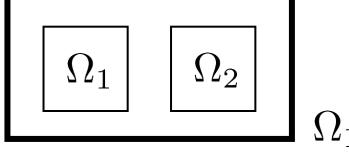
合成系の記述

(例) 量子論



 \mathcal{H}_{12}

一般確率論



$$\mathcal{H}_{12}=\mathcal{H}_1\otimes\mathcal{H}_2$$
 $\Omega_1=\Omega_{\mathrm{QT}}(\mathcal{H}_1),\ \Omega_2=\Omega_{\mathrm{QT}}(\mathcal{H}_2)$ $\Omega_{12}=\Omega_{\mathrm{QT}}(\mathcal{H}_1\otimes\mathcal{H}_2)$ 物理的な公理だけからの導出はない(?) $\Omega_{12}=\Omega_{\mathrm{QT}}(\mathcal{H}_1\otimes\mathcal{H}_2)$

$$\Omega_{12} = ?$$

物理的な公理だけからどこまで定まるか?

合成系の公理1

- 「Alice が $\omega_1 \in \Omega_1$ を(localに)準備・Bob が $\omega_2 \in \Omega_2$ を(localに)準備」は 全体系 Ω_{12} の準備の1つ $\rightarrow \exists \phi \colon \Omega_1 \times \Omega_2 \rightarrow \Omega_{12}$;
- 「Alice が $e_1 \in \mathcal{E}_1$ を(localに)測定・Bob が $e_2 \in \mathcal{E}_2$ を(localに)測定」は全体系 \mathcal{E}_{12} の測定の1つ $\rightarrow \exists \psi \colon \mathcal{E}_1 \times \mathcal{E}_2 \rightarrow \mathcal{E}_{12}$;
- 上述の ϕ と ψ は bi-affine ($\phi(\sum_i p_i \omega_1^i, \omega_2) = \sum_i p_i \phi(\omega_1^i, \omega_2)$ など);
- $[\psi(e_1, e_2)](\phi(\omega_1, \omega_2)) = e_1(\omega_1) \cdot e_2(\omega_2) \quad (\forall \omega_i \in \Omega_i, e_i \in \mathcal{E}_i).$

合成系の公理2

$$\Omega_{12}$$
 上の unit effect $u_{12}\in\mathcal{E}_{12}$ は $\psi(u_1,u_2)$ により与えられる: $u_{12}=\psi(u_1,u_2).$

[30,31]

$$imes$$
 公理 1 + 公理 2 \iff $\forall \omega_{12} \in \Omega_{12}$ が "no-signaling principle" を満たす:

$$\forall e_1 \in \mathcal{E}_1, \ \forall \{e_2^i\}_i, \ \{f_2^j\}_j \in \mathcal{O}_2,$$

$$\sum_i [\psi(e_1, e_2^i)](\omega_{12}) = \sum_j [\psi(e_1, f_2^j)](\omega_{12}) \quad$$
など

(より正確には, "partial state" が存在する)

合成系の公理 3: Tomographic locality (local tomography / distinguishability)

$$\omega_{12},\ \omega_{12}' \in \Omega_{12}$$
 に対し,
$$[\psi(e_1,e_2)](\omega_{12}) = [\psi(e_1,e_2)](\omega_{12}') \ (\forall e_1 \in \mathcal{E}_1,\ e_2 \in \mathcal{E}_2)$$
 $\Rightarrow \ \omega_{12} = \omega_{12}'.$

- o $V_{12}(\supset\Omega_{12})$ と $V_1(\supset\Omega_1),~V_2(\supset\Omega_2)$ の間には $V_{12}=V_1\otimes V_2$ (特に $\Omega_{12}\subset V_1\otimes V_2$.)
- $\phi(\omega_1,\omega_2) = \omega_1 \otimes \omega_2 \ (\in V_1 \otimes V_2), \quad \psi(e_1,e_2) = e_1 \otimes e_2 \ (\in V_1^* \otimes V_2^*).$ (特に $u_{12} = u_1 \otimes u_2$)

合成系の記述

- $\Omega_{12}\subset V_1\otimes V_2$ は $\omega_1\otimes\omega_2$ の混合(凸包)を含む;

$$\Omega_{12} \supset \Omega_1 \otimes_{min} \Omega_2 := \{ \sum_i p_i \omega_1^i \otimes \omega_2^i \}$$

minimal tensor product

- $\Omega_{12}\subset V_1\otimes V_2$ は $e_1\otimes e_2$ に対し確率 ([0,1]) を返す;

maximal tensor product

$$\Omega_{12} \subset \Omega_1 \otimes_{max} \Omega_2 := \{ \omega \in V_1 \otimes V_2 \mid (\forall e_1 \otimes e_2)(\omega) \in [0,1] \}$$

[33,34]

$$\Omega_1 \otimes_{min} \Omega_2 \subset \Omega_{12} \subset \Omega_1 \otimes_{max} \Omega_2$$
.

(同様に $\mathcal{E}_1 \otimes_{min} \mathcal{E}_2 \subset \mathcal{E}_{12} \subset \mathcal{E}_1 \otimes_{max} \mathcal{E}_2$)

一般確率論における合成系

その他

- $\Omega_1\otimes_{min}\Omega_2$ の元を separable, $\Omega_1\otimes_{max}\Omega_2\setminus\Omega_1\otimes_{min}\Omega_2$ の元を entangled という.
- $\Omega_1\otimes_{min}\Omega_2=\Omega_1\otimes_{max}\Omega_2$ \iff Ω_1,Ω_2 のどちらか(両方)が単体(古典論).
- (例) 量子論 [複素 Hilbert 空間]

$$\Omega_1 = \Omega_{\mathrm{QT}}(\mathbb{C}^{d_1}), \quad \Omega_2 = \Omega_{\mathrm{QT}}(\mathbb{C}^{d_2}) \quad \longrightarrow \quad \Omega_{12} = \Omega_{\mathrm{QT}}(\mathbb{C}^{d_1 d_2}) \quad \text{it consistent.}$$

$$(V_1 = \mathbb{R}^{d_1^2}, \quad V_2 = \mathbb{R}^{d_2^2}) \qquad \qquad (V_{12} = \mathbb{R}^{d_1^2 d_2^2} = V_1 \otimes V_2)$$

- (例) 量子論 [実 Hilbert 空間]

 $\Omega_1 = \Omega_{\mathrm{QT}}(\mathbb{R}^{d_1}), \quad \Omega_2 = \Omega_{\mathrm{QT}}(\mathbb{R}^{d_2}) \quad \longrightarrow \quad \Omega_{12} = \Omega_{\mathrm{QT}}(\mathbb{R}^{d_1d_2}) \quad \text{ it inconsistent.}$

$$(V_1 = \mathbb{R}^{\frac{d_1^2 + d_1}{2}}, \quad V_2 = \mathbb{R}^{\frac{d_2^2 + d_2}{2}})$$
 $(V_{12} = \mathbb{R}^{\frac{d_1^2 d_2^2 + d_1 d_2}{2}} \neq V_1 \otimes V_2)$

(tomographic locality を満たさない)

Contents

1. Introduction

2. Mathematical formulations

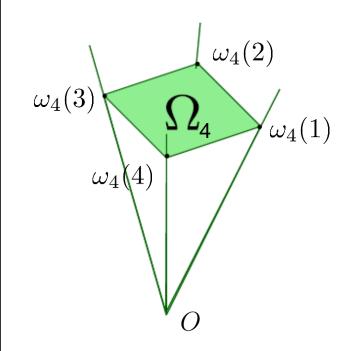
3. Specific theories and results

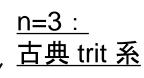
4. Summary

正多角形理論 (state space) [38]

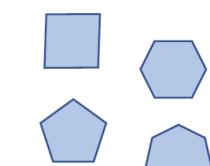
$$\Omega_n = conv(\{\omega_n(i)\}_{i=1}^n) \subset \mathbb{R}^3 \quad \text{with} \quad \omega_n(i) = \left(\cos\frac{2\pi i}{n}, \sin\frac{2\pi i}{n}, 1\right)$$

$$V = \mathbb{R}^3$$





$$conv \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$



<u>n=∞:</u> 実係数 qubit 系

正多角形理論

→ 古典と量子の"中間"を表す

不確定性関係 [18,39など]

(例) 量子論

- 状態準備の不確定性 (Preparation Uncertainty)

量子論の"不確定性"の 特徴・本質とは?

[40,41] $\Delta_{\rho}q\cdot\Delta_{\rho}p\geq\frac{\hbar}{2}$ (Δ :標準偏差 [Kennard-Robertsonの不確定性関係])

[42,43など]

- 同時測定の不確定性 (Heisenberg の不確定性 / Measurement Uncertainty)

量子論と似たbound

 $\delta p \cdot \delta q \geqslant \frac{\hbar}{2}$ (δ : "measurement noise" [Busch-Lahti-Wernerの不確定性関係])

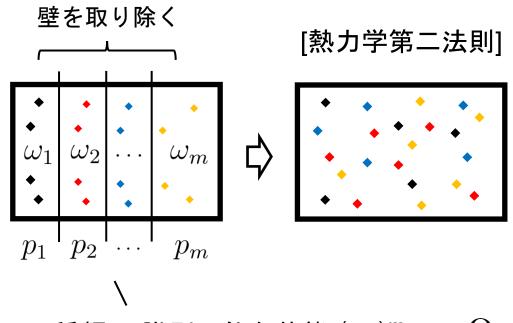
正多角形理論

- 状態準備の不確定性 (を示す測定の組)が存在 \iff $n \neq 3, 4$

[47,48]

が導出できる - 同時測定の不確定性 (を示す測定の組)が存在 $\iff n \neq 3^{[45,46]}$ 一

熱力学エントロピー (第二法則)



m "種類"の識別可能な状態 $\{\omega_i\}_{i=1}^m \subset \Omega_n$ が確率 $\{p_i\}_{i=1}^m$ で混合

 \rightarrow 系の状態: $\sum_{i=1}^m p_i \omega_i$

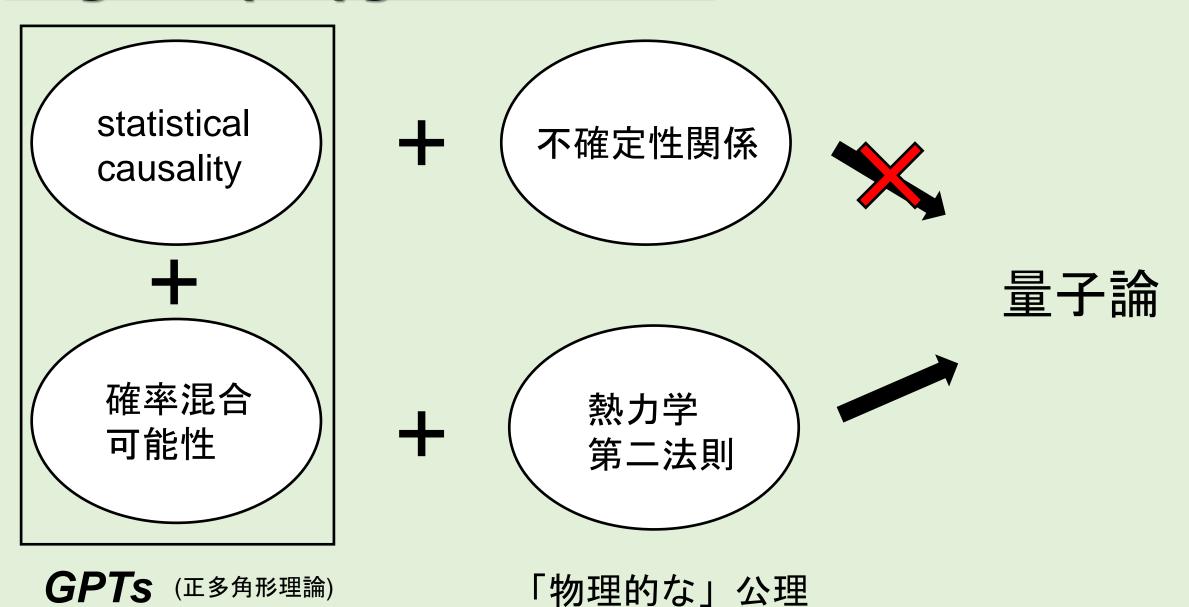
任意の識別可能な状態の組 $\{\omega_i\}_{i=1}^m\subset\Omega_n$ に対し、

$$S(\sum_{i=1}^{m} p_i \omega_i)$$

$$= \sum_{i=1}^{m} S(\omega_i) - \sum_{i=1}^{m} p_i \log p_i$$

が成り立つような状態空間 Ω_n 上の関数 (混合のエントロピー)が存在.

$$\implies n=3 \quad ext{or} \quad \infty.$$
 (古典 or 量子)



Others

その他

[52-54など]

- 正多角形理論は "(weak) self-duality" という性質を備えた state space のもっとも簡単な例
- → エンタングルメント・Bell-CHSH 不等式の破れと関連(?). [38,55]
- より一般の state space についても様々な考察が成されている:
 - 「古典論の特徴付け・導出は「物理的な公理」(例: cloning 可能性) から可能である
 「物理的な公理」のみからの量子論の導出はできていない(?)。
- 一般確率論をより"抽象化"した操作的確率論 (Operational Probabilistic Theories: OPTs) も近年盛んに研究されている. [56]

Summary

- 一般確率論(GPTs)の数学的定式化を与えた (state space を軸とした single system, bipartite system の記述).

- 正多角形理論に着目し、量子論の"物理的な"導出を試みた.

- 一般確率論を通して、量子論の本質にどこまで迫れるか.

- [1] G. Ludwig, *Zeitschrift ftir Physik*, **181**, 233-260 (1964).
- [2] G. Ludwig, "An Axiomatic Basis for Quantum Mechanics: Derivation of Hilbert space structure", vol 1. Springer-Verlag (1985).
- [3] A. Hartkämper and H. Neumann eds. "Foundations of Quantum Mechanics and Ordered Linear Spaces." Springer-Verlag (1974).
- [4] G. W. Mackey, "The mathematical foundations of quantum mechanics: a lecture-note volume." W.A. Benjamin Inc. (1963).
- [5] E. B. Davies and J. T. Lewis, Communications in Mathematical Physics, 17, 239-260 (1970).
- [6] C. M. Edwards and M. A, Gerzon, *Annales de l'institute Henri Poincaré. Section A, Physique Théorique*, **12**, 323-328 (1970).
- [7] S. Gudder, Communications in Mathematical Physics, 29, 249-264 (1973).
- [8] S. Gudder, "Stochastic Methods in Quantum Mechanics." Dover (1979).
- [9] L. Hardy, arXiv: quant-ph/0101012 (2001).
- [10] H. Barnum et al, arXiv: quant-ph/0611295 (2006).
- [11] J. Barrett, *Physical Review A*, **75**, 032304 (2007).
- [12] M. Plávala, *Physics Reports*, **1033**, 1-64 (2023).
- [13] L. Lami, PhD thesis, Universitat Autónoma de Barcelona (2017) (arXiv:1803.02902).
- [14] R. Takakura, PhD thesis, Kyoto University (2022) (arXiv:2202.13834).
- [15] 木村元, 科学基礎論研究, 40 (2), 79-84 (2013).
- [16] G. Chiribella and R. W. Spekkens eds. "Quantum Theory; Informational Foundations and Foils." Springer Dordrecht (2016).

- [17] G. Kimura et al. arXiv:1012.5361 (2010).
- [18] P. Busch et al. "Quantum Measurement", Springer Cham (2016).
- [19] 荒木不二洋,「量子場の数理」,岩波書店 (1993).
- [20] R. W. Spekkens, *Physical Review A*, **71**, 052108 (2005).
- [21] M. H. Stone, *Annali di Matematica*, **29**, 25–30 (1949).
- [22] G. Chiribella et al. *Physical Review A*, **81**, 062348 (2010).
- [23] G. Kimura et al. Journal of Mathematical Physics, 51, 093505 (2010).
- [24] A. Jenčová, Journal of Mathematical Physics, 55, 022201 (2014).
- [25] D. J. Foulis and M. K. Bennett, Foundations of Physics, 24, 1331 (1994).
- [26] E. G. Beltrametti and S. Bugajski, *Journal of Mathematical Physics*, **38**, 3020-3030 (1997).
- [27] S. Gudder and S. Pulmannová, Commentationes Mathematicae Universitatis Carolinae, 39, 645-659 (1998).
- [28] S. Gudder, International Journal of Theoretical Physics, 38, 3179-3187 (1999).
- [29] S. Pulmannová, Reports on Mathematical Physics, 53, 301-316 (2004).
- [30] S. Popescu and D. Rohrlich, Foundations of Physics, 24, 379-385 (1994).
- [31] H. Barnum and A. Wilce, arXiv:1205.3833 (2012).
- [32] G. Chiribella et al. Physical Review A, 84, 012311 (2011).

- [33] M. Kläy et al. International Journal of Theoretical Physics, 26, 199–219 (1987).
- [34] A. Wilce, International Journal of Theoretical Physics, 31, 1915–1928 (1992).
- [35] G. Aubrun et al. Geometric and Functional Analysis, 31, 181–205 (2021).
- [36] G. Aubrun et al. *Physical Review Letters*, **128**, 160402 (2022).
- [37] H. Arai et al. arXiv:2301.04196 (2023).
- [38] P. Janotta et al. New Journal of Physics, **13**, 063024 (2011).
- [39] Stanford Encyclopedia of Philosophy, "The Uncertainty Principle".
- [40] E. H. Kennard, *Zeitschrift für Physik*, **44**, 326–352 (1927).
- [41] H. P. Robertson, *Physical Review*, 34, 163-164 (1929).
- [42] W. Heisenberg , Zeitschrift für Physik, 43, 172–198 (1927).
- [43] P. Busch et al. Review of Modern Physics. **86**, 1261 (2014).
- [44] P. Busch et al. *Physical Review Letters*. **111**, 160405 (2013).
- [45] M. Plávala, *Physical Review A*, **94**, 042108 (2016).
- [46] Y. Kuramochi, *Positivity*, **24**, 1479–1486 (2020).
- [47] R. Takakura and T. Miyadera, Journal of Mathematical Physics, 61, 082203 (2020).
- [48] R. Takakura and T. Miyadera, Journal of Physics A: Mathematical and Theoretical, 54, 315302 (2021).

- [49] M. Krumm et al. New Journal of Physics, 19, 043025 (2017).
- [50] R. Takakura, Journal of Physics A: Mathematical and Theoretical, 52, 465302 (2019).
- [51] S. Minagawa et al. Physical Review Research, 4, 033091 (2022).
- [52] M. P. Müller and C. Ududec, *Physical Review Letters*, **108**, 130401 (2012).
- [53] H. Barnum et al. New Journal of Physics, 16, 123029 (2014).
- [54] H. Barnum and A. Wilce, Foundations of Physics, **44**, 192-212 (2014).
- [55] R. Takakura, arXiv:2401.04596 (2024).
- [56] 中平健治, 「図式と操作的確率論による量子論」, 森北出版 (2022) ...